[1]SONG Rui,FANG Yongchun,LIU Hui.Integrated navigation approach for the field mobile robot based on LiDAR/INS[J].CAAI Transactions on Intelligent Systems,2020,15(4):804-810.[doi:10.11992/tis.202008026]
Copy

Integrated navigation approach for the field mobile robot based on LiDAR/INS

References:
[1] HIDALGO-CARRIó J, POULAKIS P, KIRCHNER F. Adaptive localization and mapping with application to planetary rovers[J]. Journal of field robotics, 2018, 35(6): 961-987.
[2] YOUNG S H, MAZZUCHI T A, SARKANI S. A framework for predicting future system performance in autonomous unmanned ground vehicles[J]. IEEE transactions on systems, man, and cybernetics: systems, 2017, 47(7): 1192-1206.
[3] 陈成, 何玉庆, 卜春光, 等. 基于四阶贝塞尔曲线的无人车可行轨迹规划[J]. 自动化学报, 2015, 41(3): 486-496
CHEN Cheng, HE Yuqing, BU Chunguang, et al. Feasible trajectory generation for autonomous vehicles based on quartic bezier curve[J]. acta automatica sinica, 2015, 41(3): 486-496
[4] 倪志康, 厉茂海, 林睿, 等. 基于三维激光雷达与RTK融合的SLAM研究[J]. 制造业自动化, 2020, 42(7): 51-54
NI Zhikang, LI Maohai, LIN Rui, et al. Research on SLAM based on 3D Lidar and RTK fusion[J]. Manufacturing automation, 2020, 42(7): 51-54
[5] CADENA C, CARLONE L, CARRILLO H, et al. Past, present, and future of simultaneous localization and mapping: toward the robust-perception age[J]. IEEE transactions on robotics, 2016, 32(6): 1309-1332.
[6] YE H, CHEN Y, LIU M. Tightly coupled 3D lidar inertial odometry and mapping[C]//Proceedings of 2019 IEEE International Conference on Robotics and Automation. Montreal, Canada, 2019: 3144-3150.
[7] ZHANG J, SINGH S. Laser-visual-inertial odometry and mapping with high robustness and low drift[J]. Journal of field robotics, 2018, 35(8): 1242-1264.
[8] SHAN T, ENGLOT B. LeGO-LOAM: lightweight and ground-optimized lidar odometry and mapping on variable terrain[C]//Proceedings of 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Madrid, Spain, 2018: 4758-4765.
[9] HESS W, KOHLER D, RAPP H, et al. Real-time loop closure in 2D LIDAR SLAM[C]//Proceedings of 2016 IEEE International Conference on Robotics and Automation. Stockholm, Sweden, 2016: 1271-1278.
[10] FORSTER C, CARLONE L, DELLAERT F, et al. On-manifold preintegration for real-time visual-inertial odometry[J]. IEEE transactions on robotics, 2017, 33(1): 1-21.
[11] BOSSE M, ZLOT R, FLICK P. Zebedee: design of a spring-mounted 3-D range sensor with application to mobile mapping[J]. IEEE transactions on robotics, 2012, 28(5): 1104-1119.
[12] 李帅鑫, 李广云, 王力, 等. Lidar/IMU 紧耦合的实时定位方法[J/OL]. 自动化学报, https://doi.org/10.16383/j.aas.c190424.
LI Shuaixin, LI Guangyun, WANG Li, et al. Lidar/IMU tightly coupled real-time localization method[J/OL]. Acta automatica sinica, https://doi.org/10.16383/j.aas.c190424.
[13] CHEN C, HE Y, GU F, et al. A Real-time relative probabilistic mapping algorithm for high-speed off-road autonomous driving[C]//Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany, 2015: 6252-6258.
[14] GENTIL C L, VIDAL-CALLEJA T, HUANG S. 3D lidar-IMU calibration based on upsampled preintegrated measurements for motion distortion correction[C]//Proceedings of 2018 IEEE International Conference on Robotics and Automation. Brisbane, Australia, 2018: 2149-2155.
[15] GAO H, ZHANG X, YUAN J, et al. A novel global localization approach based on structural unit encoding and multiple hypothesis tracking[J]. IEEE transactions on instrumentation and measurement, 2019, 68(11): 4427-4442.
[16] ZHAO S, FANG Z, LI H, et al. A robust laser-inertial odometry and mapping method for large-scale highway environments[C]//Proceedings of 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems. Macau, China, 2019: 1285-1292.
[17] NEUHAUS F, TILMAN K, ROBERT K, et al. MC2SLAM: Real-time inertial lidar odometry using two-scan motion compensation[C]//Proceedings of 2018 German Conference on Pattern Recognition, Stuttgart, Germany, 2018: 60-72.
[18] 张雪涛, 方勇纯, 张雪波, 等. 基于误差状态卡尔曼滤波估计的旋翼无人机输入饱和控制[J]. 机器人, 2020, 42(4): 394-405
ZHANG Xuetao, FANG Yongchun, ZHANG Xuebo, et al. Error state Kalman filter estimator based input saturated control for rotorcraft unmanned aerial vehicle[J]. robot, 2020, 42(4): 394-405
[19] SHAN T, ENGLOT B, MEYERS D, et al. LIO-SAM: Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping[C]//Proceedings of 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas, USA, 2020: 1-8.
[20] KAESS M, RANGANATHAN A, DELLAERT F. iSAM: incremental smoothing and mapping[J]. IEEE transactions on robotics, 2008, 24(6): 1365-78.
[21] BLOESCH M, BURRI M, OMARI S, et al. Iterated extended Kalman filter based visual-inertial odometry using direct photometric feedback[J]. The international journal of robotics research, 2017, 36(10): 1053-72.
[22] MERRIAUX P, DUPUIS Y, BOUTTEAU R, et al. Robust robot localization in a complex oil and gas industrial environment[J]. Journal of field robotics, 2018, 35(2): 213-30.
[23] HEMANN G, SINGH S, KAESS M. Long-range GPS-denied aerial inertial navigation with LIDAR localization[C]//Proceedings of 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems. Daejeon, Korea, 2016: 1659-1666.
[24] WAN G, YANG X, CAI R, et al. Robust and precise vehicle localization based on multi-sensor fusion in diverse city scenes[C]//Proceedings of 2018 IEEE International Conference on Robotics and Automation. Brisbane, Australia, 2018: 4670-4677.
[25] SHAMSELDIN T, MANERIKAR A, ELBAHNASAWY M, et al. SLAM-based Pseudo-GNSS/INS localization system for indoor liDAR mobile mapping systems[C]//Proceedings of 2018 IEEE/ION Position, Location and Navigation Symposium. Monterey, USA, 2018: 197-208.
[26] JI K, CHEN H, DI H, et al. CPFG-SLAM: a robust simultaneous localization and mapping based on LIDAR in off-road environment[C]//Proceedings of 2018 IEEE Intelligent Vehicles Symposium (IV). Changshu, China, 2018: 650-655.
[27] HANTEN R, KUHLMANN P, OTTE S, et al. Robust real-time 3D person detection for indoor and outdoor applications[C]//Proceedings of 2018 IEEE International Conference on Robotics and Automation. Brisbane, Australia, 2018: 2000-2006.
[28] SHAO W, VIJAYARANGAN S, LI C, et al. Stereo visual inertial LiDAR simultaneous localization and mapping[C]//Proceedings of 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems. Macau, China, 2019: 370-377.
[29] PANG F, CHEN Z, PU L, et al. Depth enhanced visual-inertial odometry based on multi-state constraint Kalman filter[C]//Proceedings of 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vancouver, Canada, 2017: 1761-1767.
[30] LEUTENEGGER S, LYNEN S, BOSSE M, et al. Keyframe-based visual-inertial odometry using nonlinear optimization[J]. The international journal of robotics research, 2014, 34(3): 314-334.
Similar References:

Memo

-

Last Update: 2020-07-25

Copyright © CAAI Transactions on Intelligent Systems