[1]LI Hailin,LONG Fangju.Association rules analysis of time series based on synchronization frequent tree[J].CAAI Transactions on Intelligent Systems,2021,16(3):502-510.[doi:10.11992/tis.202008012]
Copy

Association rules analysis of time series based on synchronization frequent tree

References:
[1] 陈海燕, 刘晨晖, 孙博. 时间序列数据挖掘的相似性度量综述[J]. 控制与决策, 2017, 32(1):1-11
CHEN Haiyan, LIU Chenhui, SUN Bo. Survey on similarity measurement of time series data mining[J]. Control and decision, 2017, 32(1):1-11
[2] ACHEBAK H, DEVOLDER D, BALLESTER J. Trends in temperature-related age-specific and sex-specific mortality from cardiovascular diseases in Spain:a national time-series analysis[J]. The lancet planetary health, 2019, 3(7):e297-e306.
[3] 李海林, 梁叶. 基于关键形态特征的多元时间序列降维方法[J]. 控制与决策, 2020, 35(3):629-636
LI Hailin, LIANG Ye. Dimension reduction for multivariate time series based on crucial shape features[J]. Control and decision, 2020, 35(3):629-636
[4] 程小林, 郑兴, 李旭伟. 基于概率后缀树的股票时间序列预测方法研究[J]. 四川大学学报, 2018, 55(1):61-66
CHENG Xiaolin, ZHENG Xing, LI Xuwei. Research of stock time based on probabilistic suffix tree[J]. Journal of Sichuan University, 2018, 55(1):61-66
[5] 王 玲, 徐培培, 彭开香. 基于因子模型和动态规划的多元时间序列分段方法[J]. 控制与决策, 2020, 35(1):35-44
WANG Ling, XU Peipei, PENG Kaixiang. Segmentation of multivariate time series with factor model and dynamic programming[J]. Control and decision, 2020, 35(1):35-44
[6] AGRAWAL R, IMIELI?SKI T, SWAMI A. Mining association rules between sets of items in large databases[C]//Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data. Washington, USA, 1993:207-216.
[7] AGRAWAL R, SRIKANT R. Mining sequential patterns[C]//Proceedings of the 11th International Conference on Data Engineering. Taipei, China, 1995:3-14.
[8] 魏玲, 魏永江, 高长元. 基于Bigtable与MapReduce的Apriori算法改进[J]. 计算机科学, 2015, 42(10):208-210, 243
WEI Lin, WEI Yongjiang, GAO Changyuan. Improved Apriori algorithm based on bigtable and MapReduce[J]. Computer science, 2015, 42(10):208-210, 243
[9] KARIM R, HOSSAIN A, RASHID M, et al. A MapReduce framework for mining maximal contiguous frequent patterns in large DNA sequence datasets[J]. IETE technical review, 2012, 29(2):162-168.
[10] ZHANG Xiaolu. Pythagorean fuzzy clustering analysis:a hierarchical clustering algorithm with the ratio index-based ranking methods[J]. International journal of intelligent systems, 2018,33(9):1798-1822.
[11] TRAN T N, DRAB K, DASZYKOWSKI M. Revised DBSCAN algorithm to cluster data with dense adjacent clusters[J]. Chemometrics and intelligent laboratory systems. 2013,120(15):92-96.
[12] 杨秋翔, 孙涵. 基于权值向量矩阵约简的Apriori算法[J]. 计算机工程与设计, 2018, 39(3):690-693,762
YANG Qiuxiang, SUN Han. Apriori algorithm based on weight vector matrix reduction[J]. Computer engineering and design, 2018, 39(3):690-693,762
[13] HAN Jiawei, PEI Jian, YIN Yiwen. Mining frequent patterns without candidate generation[J]. ACM sigmod record, 2000, 29(2):1-12.
[14] DAS G, LIN K I, MANNILA H, et al. Rule discovery from time series[C]//Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining. New York, USA, 1998:16-22.
[15] VELUMANI B, UMAJOTHY P. Mining temporal association rules from time series microarray using apriori algorithm[J]. Review of bioinformatics and biometrics, 2013, 2(2):29-36.
[16] 赵益. 多时间序列上时序关联规则的挖掘[D]. 上海:东华大学, 2018.
ZHAO Yi. Discovery of tempopal assocition rules in multivariate time series[D], Shang Hai:Donghua University, 2018.
[17] CHEN Yicheng, PENG W C, LEE S Y. CEMiner-An efficient algorithm for mining closed patterns from time interval-based data[C]//Proceedings of the IEEE 11th International Conference on Data Mining. Vancouver, Canada, 2011:121-130.
[18] RUAN Guangchen, ZHANG Hui, PLALE B. Parallel and quantitative sequential pattern mining for large-scale interval-based temporal data[C]//Proceedings of 2014 IEEE International Conference on Big Data (Big Data). Washington, USA, 2014:32-39.
[19] SCHLüTER T, CONRAD S. Mining several kinds of temporal association rules enhanced by tree structures[C]//Proceedings of the 2nd International Conference on Information, Process, and Knowledge Management. Saint Maarten, Netherland Antilles, 2010:86-93.
[20] RASHID M M, GONDAL I, KAMRUZZAMAN J. Mining associated patterns from wireless sensor networks[J]. IEEE transactions on computers, 2015, 64(7):1998-2011.
[21] PANKAJ G, SAGAR B B. Discovering weighted calendar-based temporal relationship rules using frequent pattern tree[J]. Indian journal of science and technology, 2016, 9(28):1-6.
[22] 马慧, 汤庸, 潘炎. 一种基于FP-树的时态关联规则的分区挖掘方法[J]. 计算机工程, 2006, 32(17):132-134.
MA Hui, TANG Yong, PAN Yan. A FP-tree based partition mining approach to discovering temporal association rules[J]. Computer engineering, 2006, 32(17):132-134.
[23] 张建业, 潘泉, 张鹏等. 基于斜率表示的时间序列相似性度量方法[J]. 模式识别与人工智能, 2007, 20(2):271-274.
ZHANG Jianye, PAN Quan, ZHANG Peng, et al. Similarity measuring method in time series based on slope[J]. Pattern recognition and artificial intelligence, 2007, 20(2):271-274.
[24] SALEM M Z. Effects of perfume packaging on Basque female consumers purchase decision in Spain[J]. Management decision, 2018, 56(8):1748-1768.
[25] LI Hailin, WU Y J, CHEN Yewang. Time is money:dynamic-model-based time series data-mining for correlation analysis of commodity sales[J]. Journal of computational and applied mathematics, 2020, 370:112659.
Similar References:

Memo

-

Last Update: 2021-06-25

Copyright © CAAI Transactions on Intelligent Systems