[1]WANG Qianqian,MIAO Duoqian,ZHANG Yuanjian.Abnormal event detection method based on deep auto-encoder and self-updating sparse combination[J].CAAI Transactions on Intelligent Systems,2020,15(6):1197-1203.[doi:10.11992/tis.202007003]
Copy

Abnormal event detection method based on deep auto-encoder and self-updating sparse combination

References:
[1] POPOOLA O P, WANG Kejun. Video-based abnormal human behavior recognition—a review[J]. IEEE transactions on systems, man, and cybernetics, part C (applications and reviews), 2012, 42(6): 865-878.
[2] MABROUK A B, ZAGROUBA E. Abnormal behavior recognition for intelligent video surveillance systems: A review[J]. Expert systems with applications, 2018, 91: 480-491.
[3] ROSHTKHARI M J, LEVINE M D. Online dominant and anomalous behavior detection in videos[C]//Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA, 2013: 2611-2618.
[4] ZAHARESCU A, WILDES R. Anomalous behaviour detection using spatiotemporal oriented energies, subset inclusion histogram comparison and event-driven processing[C]//Proceedings of the 11th European Conference on Computer Vision. Heraklion, Greece, 2010: 563-576.
[5] WANG Tian, SNOUSSI H. Histograms of optical flow orientation for visual abnormal events detection[C]//Proceedings of 2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance. Beijing, China, 2012: 13-18.
[6] XU Dan, YAN Yan, RICCI E, et al. Detecting anomalous events in videos by learning deep representations of appearance and motion[J]. Computer vision and image understanding, 2017, 156: 117-127.
[7] 李俊杰, 刘成林, 朱明. 基于多任务CNN的监控视频中异常行人快速检测[J]. 计算机系统应用, 2018, 27(11): 78-83
LI Junjie, LIU Chenglin, ZHU Ming. Fast abnormal pedestrians detection based on multi-task CNN in surveillance video[J]. Computer systems & applications, 2018, 27(11): 78-83
[8] ZHOU J T, DU Jiawei, ZHU Hongyuan, et al. AnomalyNet: an anomaly detection network for video surveillance[J]. IEEE transactions on information forensics and security, 2019, 14(10): 2537-2550.
[9] NGUYEN T N, MEUNIER J. Anomaly detection in video sequence with appearance-motion correspondence[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea (South), 2019: 1273-1283.
[10] LEE D G, SUK H I, LEE S W. Crowd behavior representation using motion influence matrix for anomaly detection[C]//Proceedings of 2013 2nd IAPR Asian Conference on Pattern Recognition. Naha, Japan, 2013: 110-114.
[11] 胡正平, 张乐, 尹艳华. 时空深度特征AP聚类的稀疏表示视频异常检测算法[J]. 信号处理, 2019, 35(3): 386-395
HU Zhengping, ZHANG Le, YIN Yanhua. Video anomaly detection by AP clustering sparse representation based on spatial-temporal deep feature model[J]. Journal of signal processing, 2019, 35(3): 386-395
[12] HASAN M, CHOI J, NEUMANN J, et al. Learning temporal regularity in video sequences[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016: 733-742.
[13] WEI Hao, LI Kai, LI Haichang, et al. Detecting video anomaly with a stacked convolutional LSTM framework[C]//Proceedings of 12th International Conference on Computer Vision Systems. Thessaloniki, Greece, 2019: 330-342.
[14] CONG Yang, YUAN Junsong, LIU Ji. Sparse reconstruction cost for abnormal event detection[C]//Proceedings of 2011 IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA, 2011: 3449-3456.
[15] ZHAO Bin, LI Feifei, XING E P. Online detection of unusual events in videos via dynamic sparse coding[C]//Proceedings of 2011 IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA, 2011: 3313-3320.
[16] LU Cewu, SHI Jianping, JIA Jiaya. Abnormal event detection at 150 FPS in MATLAB[C]//Proceedings of the IEEE International Conference on Computer Vision. Sydney, Australia, 2013: 2720-2727.
[17] LUO Weixin, LIU Wen, GAO Shenghua. A revisit of sparse coding based anomaly detection in stacked RNN framework[C]//Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy, 2017: 341-349.
[18] SAJID H, CHEUNG S C S. Universal multimode background subtraction[J]. IEEE transactions on image processing, 2017, 26(7): 3249-3260.
[19] ZIVKOVIC Z. Improved adaptive Gaussian mixture model for background subtraction[C]//Proceedings of the 17th International Conference on Pattern Recognition. Cambridge, UK, 2004: 28-31.
[20] FARNEB?CK G. Two-frame motion estimation based on polynomial expansion[C]//Proceedings of the 13th Scandinavian Conference on Image Analysis. Halmstad, Sweden, 2003: 363-370.
[21] SMEUREANU S, IONESCU R T, POPESCU M, et al. Deep appearance features for abnormal behavior detection in video[C]//Proceedings of the 19th International Conference on Image Analysis and Processing. Catania, Italy, 2017: 779-789.
[22] RUSSAKOVSKY O, DENG Jia, SU Hao, et al. ImageNet large scale visual recognition challenge[J]. International journal of computer vision, 2015, 115(3): 211-252.
[23] MAHADEVAN V, LI Weixin, BHALODIA V, et al. Anomaly detection in crowded scenes[C]//Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, USA, 2010: 1975-1981.
[24] BRADLEY A P. The use of the area under the ROC curve in the evaluation of machine learning algorithms[J]. Pattern recognition, 1997, 30(7): 1145-1159.
[25] LIU Yusha, LI Chunliang, PóCZOS B. Classifier two-sample test for video anomaly detections[C]//Proceedings of the 29th British Machine Vision Conference. Newcastle, UK, 2018: 71.
[26] MEHRAN R, OYAMA A, SHAH M. Abnormal crowd behavior detection using social force model[C]//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA, 2009: 935-942.
[27] WANG Siqi, ZHU En, YIN Jianping, et al. Anomaly detection in crowded scenes by SL-HOF descriptor and foreground classification[C]//Proceedings of 2016 23rd International Conference on Pattern Recognition. Cancun, Mexico, 2016: 3398-3403.
Similar References:

Memo

-

Last Update: 2020-12-25

Copyright © CAAI Transactions on Intelligent Systems