[1]WANG Zhaoguo,ZHANG Hongyun,MIAO Duoqian.Automatic selection method of non-maximum suppression threshold based on F1 score[J].CAAI Transactions on Intelligent Systems,2020,15(5):1006-1012.[doi:10.11992/tis.202006056]
Copy

Automatic selection method of non-maximum suppression threshold based on F1 score

References:
[1] FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D, et al. Object detection with discriminatively trained part-based models[J]. IEEE transactions on pattern analysis and machine intelligence, 2010, 32(9): 1627-1645.
[2] HAN Junwei, ZHANG Dingwen, CHENG Gong, et al. Advanced deep-learning techniques for salient and category-specific object detection: a survey[J]. IEEE signal processing magazine, 2018, 35(1): 84-100.
[3] XIE Cihang, WANG Jianyu, ZHANG Zhishuai, et al. Adversarial examples for semantic segmentation and object detection[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy, 2017: 1369-1378.
[4] BORJI A, CHENG Mingming, JIANG Huaizu, et al. Salient object detection: a benchmark[J]. IEEE transactions on image processing, 2015, 24(12): 5706-5722.
[5] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016: 779-788.
[6] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, the Netherlands, 2016: 21-37.
[7] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv preprint arXiv: 1804.02767, 2018.
[8] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA, 2014: 580-587.
[9] GIRSHICK R. Fast R-CNN[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, USA, 2015: 1440-1448.
[10] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149.
[11] ROSENFELD A, THURSTON M. Edge and curve detection for visual scene analysis[J]. IEEE transactions on computers, 1971, C-20(5): 562-569.
[12] BODLA N, SINGH B, CHELLAPPA R, et al. Soft-NMS—improving object detection with one line of code[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy, 2017: 5561-5569.
[13] HE Yihui, ZHU Chenchen, WANG Jianren, et al. Bounding box regression with uncertainty for accurate object detection[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA, 2019: 2888-2897.
[14] 侯志强, 刘晓义, 余旺盛, 等. 基于双阈值-非极大值抑制的Faster R-CNN改进算法[J]. 光电工程, 2019, 46(12): 190159
HOU Zhiqiang, LIU Xiaoyi, YU Wangsheng, et al. Improved algorithm of Faster R-CNN based on double threshold-non-maximum suppression[J]. Opto-electronic engineering, 2019, 46(12): 190159
[15] 赵文清, 严海, 邵绪强. 改进的非极大值抑制算法的目标检测[J]. 中国图象图形学报, 2018, 23(11): 1676-1685
ZHAO Wenqing, YAN Hai, SHAO Xuqiang. Object detection based on improved non-maximum suppression algorithm[J]. Journal of image and graphics, 2018, 23(11): 1676-1685
[16] LIU Yuliang, JIN Lianwen, ZHANG Shuaitao, et al. Detecting curve text in the wild: new dataset and new solution[J]. arXiv preprint arXiv: 1712.02170, 2017.
[17] JIANG Borui, LUO Ruixuan, MAO Jiayuan, et al. Acquisition of localization confidence for accurate object detection[C]//Proceedings of the 15th European Conference on Computer Vision. Munich, Germany, 2018: 784-799.
[18] HOSANG J, BENENSON R, SCHIELE B. A Convnet for Non-maximum Suppression[C]//Proceedings of the 38th German Conference on Pattern Recognition. Hannover, Germany, 2016: 192-204.
[19] LIU Songtao, HUANG Di, WANG Yunhong. Adaptive NMS: refining pedestrian detection in a crowd[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA, 2019: 6459-6468.
[20] EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The PASCAL visual object classes (VOC) challenge[J]. International journal of computer vision, 2010, 88(2): 303-338.
[21] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland, 2014: 740-755.
Similar References:

Memo

-

Last Update: 2021-01-15

Copyright © CAAI Transactions on Intelligent Systems