[1]LI Jiamin,LIU Xingbo,NIE Xiushan,et al.Triplet deep Hashing learning for judicial case similarity matching method[J].CAAI Transactions on Intelligent Systems,2020,15(6):1147-1153.[doi:10.11992/tis.202006049]
Copy

Triplet deep Hashing learning for judicial case similarity matching method

References:
[1] 贾君枝, 毛海飞. 基于法律框架网络本体的语义匹配技术研究[J]. 情报理论与实践, 2008, 31(1): 124-128
JIA Junzhi, MAO Haifei. Research on the semantic matching technology based on the Chinese legal framenet ontology[J]. Information studies: theory & application, 2008, 31(1): 124-128
[2] INDYK P, MOTWANI R. Approximate nearest neighbors: towards removing the curse of dimensionality[C]//Proceedings of the 30th Annual ACM Symposium on Theory of Computing. Dallas, USA, 1998: 604-613.
[3] LAI Hanjiang, PAN Yan, LIU Ye, et al. Simultaneous feature learning and hash coding with deep neural networks[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015: 3270-3278.
[4] GIONIS A, INDYK P, MOTWANI R. Similarity search in high dimensions via hashing[C]//Proceedings of the 25th International Conference on Very Large Data Bases. Edinburgh, Scotland, 1999: 518-529.
[5] WEISS Y, TORRALBA A, FERGUS R. Spectral hashing[C]//Proceedings of the 21st International Conference on Neural Information Processing Systems. Vancouver, Canada, 2008: 1753-1760.
[6] LIU Wei, WANG Jun, KUMAR S, et al. Hashing with graphs[C]//Proceedings of the 28th International Conference on Machine Learning. Bellevue, USA, 2011: 1-8.
[7] GONG Yunchao, LAZEBNIK S, GORDO A, et al. Iterative quantization: a procrustean approach to learning binary codes for large-scale image retrieval[J]. IEEE transactions on pattern analysis and machine intelligence, 2013, 35(12): 2916-2929.
[8] KULIS B, DARRELL T. Learning to hash with binary reconstructive embeddings[C]//Proceedings of the 22nd International Conference on Neural Information Processing Systems. Vancouver, Canada, 2009: 1042-1050.
[9] NOROUZI M, FLEET D J. Minimal loss hashing for compact binary codes[C]//Proceedings of the 28th International Conference on International Conference on Machine Learning. Bellevue, USA, 2011: 353-360.
[10] LIU Wei, WANG Jun, JI Rongrong, et al. Supervised hashing with kernels[C]//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA, 2012: 2074-2081.
[11] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, USA, 2012: 1097-1105.
[12] SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015: 1?9.
[13] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile, 2015: 1026?1034.
[14] SZEGEDY C, TOSHEV A, ERHAN D. Deep neural networks for object detection[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada, USA, 2013: 2553-2561.
[15] LIN K, YANG H F, HSIAO J H, et al. Deep learning of binary hash codes for fast image retrieval[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Boston, USA, 2015: 27-35.
[16] XIA Rongkai, PAN Yan, LAI Hanjiang, et al. Supervised hashing for image retrieval via image representation learning[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence. Québec City, Québec, Canada, 2014: 2156?2162.
[17] 李泗兰, 郭雅. 基于深度学习哈希算法的快速图像检索研究[J]. 计算机与数字工程, 2019, 47(12): 3187-3192
LI Silan, GUO Ya. Fast image retrieval based on hash algorithm in depth learning[J]. Computer and digital engineering, 2019, 47(12): 3187-3192
[18] LIONG V E, LU Jiwen, WANG Gang, et al. Deep hashing for compact binary codes learning[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015: 2475-2483.
[19] YANG H F, LIN K, CHEN Chusong. Supervised learning of semantics-preserving hashing via deep neural networks for large-scale image search[J]. Computer Science, 2015, 10(12): 131?138.
[20] DEVLIN J, CHANG Mingwei, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Minneapolis, USA, 2019: 4171?4186.
[21] 汪静, 罗浪, 王德强. 基于Word2Vec的中文短文本分类问题研究[J]. 计算机系统应用, 2018, 27(5): 209-215
WANG Jing, LUO Lang, WANG Deqiang. Research on Chinese short text classification based on Word2Vec[J]. Computer systems & applications, 2018, 27(5): 209-215
[22] LI Xi, LIN Guosheng, SHEN Chunhua, et al. Learning hash functions using column generation[C]//Proceeding of the 30th International Conference on Machine Learning, 2013: 142-150.
[23] NOROUZI M, FLEET D J, SALAKHUTDINOV R. Hamming distance metric learning[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, USA, 2012: 1061?1069.
[24] GONG Yunchao, LAZEBNIK S. Iterative quantization: a procrustean approach to learning binary codes[C]//Proceedings of CVPR 2011. Providence, USA, 2011: 817-824.
[25] SONG Jingkun, YANG Yi, HUANG Zi, et al. Effective multiple feature hashing for large-scale near-duplicate video retrieval[J]. IEEE transactions on multimedia, 2013, 15(8): 1997-2008.
Similar References:

Memo

-

Last Update: 2020-12-25

Copyright © CAAI Transactions on Intelligent Systems