[1]ZHONG Qiubo,ZHENG Caiming,PIAO Songhao.Research on skeleton-based action recognition with spatiotemporal fusion and human–robot interaction[J].CAAI Transactions on Intelligent Systems,2020,15(3):601-608.[doi:10.11992/tis.202006029]
Copy

Research on skeleton-based action recognition with spatiotemporal fusion and human–robot interaction

References:
[1] SIMONYAN K, ZISSERMAN A. Two-stream convolutional networks for action recognition in videos[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada, 2014: 568-576.
[2] BAGAUTDINOV T, ALAHI A, FLEURET F, et al. Social scene understanding: end-to-end multi-person action localization and collective activity recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017: 3425-3434.
[3] WANG Heng, SCHMID C. Action recognition with improved trajectories[C]//Proceedings of the IEEE International Conference on Computer Vision. Sydney, Australia, 2013: 3551-3558.
[4] CAO Zhe, SIMON T, WEI S E, et al. Realtime multi-person 2D pose estimation using part affinity fields[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017: 1302-1310.
[5] CHEN Yilun, WANG Zhicheng, PENG Yuxiang, et al. Cascaded pyramid network for multi-person pose estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018: 7103-7112.
[6] 龚冬颖, 黄敏, 张洪博, 等. RGBD人体行为识别中的自适应特征选择方法[J]. 智能系统学报, 2017, 12(1): 1-7
GONG Dongying, HUANG Min, ZHANG Hongbo, et al. Adaptive feature selection method for action recognition of human body in RGBD data[J]. CAAI transactions on intelligent systems, 2017, 12(1): 1-7
[7] 姬晓飞, 王昌汇, 王扬扬. 分层结构的双人交互行为识别方法[J]. 智能系统学报, 2015, 10(6): 893-900
JI Xiaofei, WANG Changhui, WANG Yangyang. Human interaction behavior-recognition method based on hierarchical structure[J]. CAAI transactions on intelligent systems, 2015, 10(6): 893-900
[8] 庄伟源, 成运, 林贤明, 等. 关键肢体角度直方图的行为识别[J]. 智能系统学报, 2015, 10(1): 20-26
ZHUANG Weiyuan, CHENG Yun, LIN Xianming, et al. Action recognition based on the angle histogram of key parts[J]. CAAI transactions on intelligent systems, 2015, 10(1): 20-26
[9] 徐志通, 骆炎民, 柳培忠. 联合加权重构轨迹与直方图熵的异常行为检测[J]. 智能系统学报, 2018, 13(6): 1015-1026
XU Zhitong, LUO Yanmin, LIU Peizhong. Abnormal behavior detection of joint weighted reconstruction trajectory and histogram entropy[J]. CAAI transactions on intelligent systems, 2018, 13(6): 1015-1026
[10] 吴云鹏, 赵晨阳, 时增林, 等. 基于流密度的多重交互集体行为识别算法[J]. 计算机学报, 2017, 40(11): 2519-2532
WU Yunpeng, ZHAO Chenyang, SHI Zenglin, et al. A flow density based algorithm for detecting coherent motion with multiple interaction[J]. Chinese journal of computers, 2017, 40(11): 2519-2532
[11] 陈婷婷, 阮秋琦, 安高云. 视频中人体行为的慢特征提取算法[J]. 智能系统学报, 2015, 10(3): 381-386
CHEN Tingting, RUAN Qiuqi, AN Gaoyun. Slow feature extraction algorithm of human actions in video[J]. CAAI transactions on intelligent systems, 2015, 10(3): 381-386
[12] 丁重阳, 刘凯, 李光, 等. 基于时空权重姿态运动特征的人体骨架行为识别研究[J]. 计算机学报, 2020, 43(1): 29-40
DING Chongyang, LIU Kai, LI Guang, et al. Spatio-temporal weighted posture motion features for human skeleton action recognition research[J]. Chinese journal of computers, 2020, 43(1): 29-40
[13] 莫宏伟, 汪海波. 基于Faster R-CNN的人体行为检测研究[J]. 智能系统学报, 2018, 13(6): 967-973
MO Hongwei, WANG Haibo. Research on human behavior detection based on Faster R-CNN[J]. CAAI transactions on intelligent systems, 2018, 13(6): 967-973
[14] 姬晓飞, 谢旋, 任艳. 深度学习的双人交互行为识别与预测算法研究[J]. 智能系统学报, DOI: 10.11992/tis. 201812029.
JI Xiaofei, XIE Xuan, Ren Yan. Human interaction recognition and prediction algorithm based on Deep Learning [J]. CAAI transactions on intelligent systems, DOI: 10.11992/tis. 201812029.
[15] 谢昭, 周义, 吴克伟, 等. 基于时空关注度LSTM的行为识别[J/OL]. 计算机学报: (2019-12-17) http://kns.cnki.net/kcms/detail/11.1826.TP.20191227.1658.002.html.
XIE Zhao, ZHOU Yi, WU Kewei, et al. Activity recognition based on spatial-temporal attention LSTM[J/OL] Chinese journal of computers: (2019-12-17) http://kns.cnki.net/kcms/detail/11.1826.TP.20191227.1658.002.html.
[16] 王传旭, 胡小悦, 孟唯佳, 等. 基于多流架构与长短时记忆网络的组群行为识别方法研究[J]. 电子学报, 2020, 48(4): 800-807
WANG Chuanxu, HU Xiaoyue, MENG Weijia, et al. Research on group behavior recognition method based on multi-stream architecture and long short-term memory network[J]. Acta electronica sinica, 2020, 48(4): 800-807
[17] 郑兴华, 孙喜庆, 吕嘉欣, 等. 基于深度学习和智能规划的行为识别[J]. 电子学报, 2019, 47(8): 1661-1668
ZHENG Xinghua, SUN Xiqing, LU Jiaxin, et al. Action recognition based on deep learning and artificial intelligence planning[J]. Acta electronica sinica, 2019, 47(8): 1661-1668
[18] 张冰冰,葛疏雨,王旗龙,等.基于多阶信息融合的行为识别方法研究[J/OL]. 自动化学报, [2020-06-17] DOI: 10.16383/j.aas.c180265.
ZHANG Bingbing, GE Shuyu, WANG Qilong, et al. Multi-order Information Fusion Method for Human Action Recognition[J/OL]. ACTA automatica sinica, [2020-06-17] DOI: 10.16383/j.aas.c180265.
[19] LIU Jun, SHAHROUDY A, XU Dong, et al. Spatio-temporal LSTM with trust gates for 3d human action recognition[C]//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, The Netherlands, 2016: 816-833.
[20] LI Chao, ZHONG Qiaoyong, XIE Di, et al. Skeleton-based action recognition with convolutional neural networks[C]//Proceedings of 2017 IEEE International Conference on Multimedia and Expo Workshops. Hong Kong, China, 2017: 597-600.
[21] YAN Sijie, XIONG Yuanjun, LIN Dahua. Spatial temporal graph convolutional networks for skeleton-based action recognition[C]//Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence. New Orleans, USA, 2018: 7444-7452.
[22] SHI L, ZHANG Y, CHENG J, et al. Skeleton-based action recognition with multi-stream adaptive graph convolutional networks[J/OL]. [2020-06-01] https://arxiv.org/abs/1912.06971, 2019.
[23] LIU Ziyu, ZHANG Hongwen, CHEN Zhenghao, et al. Disentangling and unifying graph convolutions for skeleton-based action recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA, 2020: 143-152.
[24] PENG W, HONG X, CHEN H, et al. Learning Graph Convolutional Network for Skeleton-based Human Action Recognition by Neural Searching[C]//Proceedings of Thirty-Fourth AAAI Conference on Artificial Intelligence. New York, USA, 2020: 2669-2676.
[25] OBINATA Y, YAMAMOTO T. Temporal extension module for skeleton-based action recognition[J/OL]. [2020-03-19] http://arxiv.org/abs/2003.08951.
[26] SHI L, ZHANG Y, CHENG J, et al. Two-stream adaptive graph convolutional networks for skeleton-based action recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Los Angeles, USA, 2019: 12026-12035.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems