[1]WANG Lijuan,DING Shifei.A spectral clustering algorithm based on ELM-AE feature representation[J].CAAI Transactions on Intelligent Systems,2021,16(3):560-566.[doi:10.11992/tis.202005021]
Copy

A spectral clustering algorithm based on ELM-AE feature representation

References:
[1] BERKHIN P. A survey of clustering data mining techniques[M]//KOGAN J, NICHOLAS C, TEBOULLE M. Grouping Multidimensional Data. Berlin, Heidelberg:Springer, 2006:25-71.
[2] 孙吉贵, 刘杰, 赵连宇. 聚类算法研究[J]. 软件学报, 2008, 19(1):48-61
SUN Jigui, LIU Jie, ZHAO Lianyu. Clustering algorithms research[J]. Journal of software, 2008, 19(1):48-61
[3] 刘兵. Web数据挖掘[M]. 俞勇, 薛贵荣, 韩定一, 译. 北京:清华大学出版社, 2011.
[4] WU Junjie, LIU Hongfu, XIONG Hui, et al. K-means-based consensus clustering:a unified view[J]. IEEE transactions on knowledge and data engineering, 2015, 27(1):155-169.
[5] WANG Yangtao, CHEN Lihui. Multi-view fuzzy clustering with minimax optimization for effective clustering of data from multiple sources[J]. Expert systems with applications, 2017, 72:457-466.
[6] VAN LUXBURG U. A tutorial on spectral clustering[J]. Statistics and computing, 2007, 17(4):395-416.
[7] JIA Hongjie, DING Shifei, XU Xinzheng, et al. The latest research progress on spectral clustering[J]. Neural computing and applications, 2014, 24(7/8):1477-1486.
[8] 蔡晓妍, 戴冠中, 杨黎斌. 谱聚类算法综述[J]. 计算机科学, 2008, 35(7):14-18
CAI Xiaoyan, DAI Guanzhong, YANG Libin. Survey on spectral clustering algorithms[J]. Computer science, 2008, 35(7):14-18
[9] HUANG Guangbin, CHEN Lei, SIEW C K. Universal approximation using incremental constructive feedforward networks with random hidden nodes[J]. IEEE transactions on neural networks, 2006, 17(4):879-892.
[10] ZHANG Rui, LAN Yuan, HUANG Guangbin, et al. Universal approximation of extreme learning machine with adaptive growth of hidden nodes[J]. IEEE transactions on neural networks and learning systems, 2012, 23(2):365-371.
[11] HUANG Guangbin, ZHOU Hongming, DING Xiaojian, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE transactions on systems, man, and cybernetics, part B (cybernetics), 2012, 42(2):513-529.
[12] DA SILVA B L S, INABA F K, SALLES E O T, et al. Outlier Robust Extreme Machine Learning for multi-target regression[J]. Expert systems with applications, 2020, 140:112877.
[13] ZENG Yijie, LI Yue, CHEN Jichao, et al. ELM embedded discriminative dictionary learning for image classification[J]. Neural networks, 2020, 123:331-342.
[14] WU Chao, LI Yaqian, ZHAO Zhibiao, et al. Extreme learning machine with multi-structure and auto encoding receptive fields for image classification[J]. Multidimensional systems and signal processing, 2020, 31(4):1277-1298.
[15] BARTLETT P L. The sample complexity of pattern classification with neural networks:the size of the weights is more important than the size of the network[J]. IEEE transactions on information theory, 1998, 44(2):525-536.
[16] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507.
[17] BENGIO Y, YAO Li, ALAIN G, et al. Generalized denoising auto-encoders as generative models[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada:Curran Associates Inc., 2013:899-907.
[18] BALDI P. Autoencoders, unsupervised learning and deep architectures[C]//Proceedings of the 2011 International Conference on Unsupervised and Transfer Learning workshop. Washington, USA:JMLR. org, 2011:37-50.
[19] 袁非牛, 章琳, 史劲亭, 等. 自编码神经网络理论及应用综述[J]. 计算机学报, 2019, 42(1):203-230
YUAN Feiniu, ZHANG Lin, SHI Jinting, et al. Theories and applications of auto-encoder neural networks:a literature survey[J]. Chinese journal of computers, 2019, 42(1):203-230
[20] VINCENT P, LAROCHELLE H, LAJOIE I, et al. Stacked denoising autoencoders:learning useful representations in a deep network with a local denoising criterion[J]. Journal of machine learning research, 2010, 11(12):3371-3408.
[21] 刘帅师, 程曦, 郭文燕, 等. 深度学习方法研究新进展[J]. 智能系统学报, 2016, 11(5):567-577
LIU Shuaishi, CHENG Xi, GUO Wenyan, et al. Progress report on new research in deep learning[J]. CAAI Transactions on intelligent systems, 2016, 11(5):567-577
[22] 李建元, 周脚根, 关佶红, 等. 谱图聚类算法研究进展[J]. 智能系统学报, 2011, 6(5):405-414
LI Jianyuan, ZHOU Jiaogen, GUAN Jihong, et al. A survey of clustering algorithms based on spectra of graphs[J]. CAAI transactions on intelligent systems, 2011, 6(5):405-414
[23] FILIPPONE M, CAMASTRA F, MASULLI F, et al. A survey of kernel and spectral methods for clustering[J]. Pattern recognition, 2008, 41(1):176-190.
[24] NG A Y, JORDAN M I, WEISS Y. On spectral clustering:analysis and an algorithm[C]//Proceedings of the 14th International Conference on Neural Information Processing Systems:Natural and Synthetic. Vancouver, British Columbia, Canada:MIT Press, 2001:849-856.
[25] KASUN L L C, ZHOU H, HUANG G B, et al. Representational learning with extreme learning machine for big data[J]. IEEE intelligent systems, 2013, 28(6):31-34.
[26] DING Shifei, ZHANG Nan, ZHANG Jian, et al. Unsupervised extreme learning machine with representational features[J]. International journal of machine learning and cybernetics, 2017, 8(2):587-595.
Similar References:

Memo

-

Last Update: 2021-06-25

Copyright © CAAI Transactions on Intelligent Systems