[1]CHAI Ruimin,YIN Chen,MENG Xiangfu,et al.A recurrent neural network model based on spatial and temporal information for the next point of interest recommendation[J].CAAI Transactions on Intelligent Systems,2021,16(3):407-415.[doi:10.11992/tis.202004009]
Copy

A recurrent neural network model based on spatial and temporal information for the next point of interest recommendation

References:
[1] RENDLE S, FREUDENTHALER C, SCHMIDT-THIEME L. Factorizing personalized Markov chains for next-basket recommendation[C]//Proceedings of the 19th International Conference on World Wide Web. North Carolina, USA, 2010:811-820.
[2] LIU Qiang, WU Shu, WANG Diyi, et al. Context-aware sequential recommendation[C]//Proceedings of the IEEE 16th International Conference on Data Mining. Barcelona, Spain, 2016:1053-1058.
[3] FENG Jie, LI Yong, ZHANG Chao, et al. DeepMove:predicting human mobility with attentional recurrent networks[C]//Proceedings of the 2018 World Wide Web Conference. Lyon, France, 2018:1459-1468.
[4] LIU Qiang, WU Shu, WANG Liang, et al. Predicting the next location:a recurrent model with spatial and temporal contexts[C]//Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. Phoenix, USA, 2016:194-200.
[5] YANG Dingqi, ZHANG Daqing, ZHENG V W, et al. Modeling user activity preference by leveraging user spatial temporal characteristics in LBSNs[J]. IEEE transactions on systems, man, and cybernetics:systems, 2015, 45(1):129-142.
[6] LI Huayu, GE Yong, HONG Richang, et al. Point-of-interest recommendations:learning potential check-ins from friends[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, USA, 2016:975-984.
[7] ZHANG Zhiyuan, LIU Yun, ZHANG Zhenjiang, et al. Fused matrix factorization with multi-tag, social and geographical influences for POI recommendation[J]. World wide web, 2019, 22(3):1135-1150.
[8] 孟祥福, 张霄雁, 唐延欢, 等. 基于地理-社会关系的多样性与个性化兴趣点推荐[J]. 计算机学报, 2019, 42(11):2574-2590
MENG Xiangfu, ZHANG Xiaoyan, TANG Yanhuan, et. al A diversified and personalized recommendation approach based on geo-social relationships[J]. Chinese journal of computers, 2019, 42(11):2574-2590
[9] XIN Xin, CHEN Bo, HE Xiangnan, et al. CFM:convolutional factorization machines for context-aware recommendation[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. Macao, China, 2019:3926-3932.
[10] HE Jing, LI Xin, LIAO Lejian. Category-aware next point-of-interest recommendation via listwise bayesian personalized ranking[C]//Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence. Melbourne, Australia, 2017:1837-1843.
[11] ZHANG Zhiqian, LI Chenliang, WU Zhiyong, et al. NEXT:a neural network framework for next POI recommendation[J]. Frontiers of computer science, 2020, 14(2):314-333.
[12] ZHANG Lu, SUN Zhu, ZHANG Jie, et al. Modeling hierarchical category transition for next POI recommendation with uncertain check-ins[J]. Information sciences, 2020, 515:169-190.
[13] CHO K, VAN MERRI?NBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha, Qatar, 2014:1724-1734.
[14] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural computation, 1997, 9(8):1735-1780.
[15] CHUNG J, GULCEHRE C, CHO K, et al. Gated feedback recurrent neural networks[C]//Proceedings of the 32nd International Conference on Machine Learning. Lille, France, 2015:2067-2075.
[16] 孟祥福, 齐雪月, 张全贵, 等. 基于用户-兴趣点耦合关系的兴趣点推荐方法[J]. 智能系统学报, 2021, 16(2):228-236
MENG Xiangfu,QI Xueyue,ZHANG Quangui,et al. A POI recommendation approach based on user-poi coupling relationships[J]. CAAI transactions on intelligent systems, 2021, 16(2):228-236
[17] FENG Shanshan, LI Xutao, ZENG Yifeng, et al. Personalized ranking metric embedding for next new POI recommendation[C]//Proceedings of the Twenty-Fourth International Conference on Artificial Intelligence. Buenos Aires, Argentina, 2015:2069-2075.
[18] XU Shuai, CAO Jiuxin, LEGG P, et al. Venue2Vec:an efficient embedding model for fine-grained user location prediction in geo-social networks[J]. IEEE systems journal, 2020, 14(2):1740-1751.
[19] SALAKHUTDINOV R, MNIH A. Probabilistic matrix factorization[C]//Proceedings of the 20th International Conference on Neural Information Processing Systems. Vancouver, Canada, 2007:1257-1264.
[20] HE Xiannan, LIAO Lizi, ZHANG Hanwang, et al. Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web. Perth, Australia, 2017:173-182.
[21] CHENG Chen, YANG Haiqin, LYU M R, et al. Where you like to go next:successive point-of-interest recommendation[C]//Proceedings of the 23rd International Joint Conference on Artificial Intelligence. Beijing, China, 2013:2605-2611.
[22] XIE Min, YIN Hongzhi, WANG Hao, et al. Learning graph-based POI embedding for location-based recommendation[C]//Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. Indianapolis, USA, 2016:15-24.
[23] 鲜学丰, 陈晓杰, 赵朋朋, 等. 基于上下文感知和个性化度量嵌入的下一个兴趣点推荐[J]. 计算机工程与科学, 2018, 40(4):616-625
XIAN Xuefeng, CHEN Xiaojie, ZHAO Pengpeng, et al. Context-aware personalized metric embedding for next POI recommendation[J]. Computer engineering & science, 2018, 40(4):616-625
[24] FENG Shanshan, CONG Gao, AN Bo, et al. POI2Vec:geographical latent representation for predicting future visitors[C]//Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. San Francisco, USA, 2017:102-108.
[25] CUI Qiang, TANG Yuyuan, WU Shu, et al. Distance2Pre:personalized spatial preference for next point-of-interest prediction[C]//23rd Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining. Macau, China, 2019:289-301.
[26] ZHAO Pengpeng, ZHU Haifeng, LIU Yanchi, et al. Where to go next:a spatio-temporal gated network for next POI recommendation[J]. Proceedings of the AAAI conference on artificial intelligence, 2019, 33(1):5877-5884.
[27] YUAN Quan, CONG Gao, MA Zongyang, et al. Time-aware point-of-interest recommendation[C]//Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval. Montreal, Canada, 2013:363-372.
[28] HE Jing, LI Xin, LIAO Lejian. Next point-of-interest recommendation via a category-aware Listwise Bayesian Personalized Ranking[J]. Journal of computational science, 2018, 28:206-216.
[29] RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR:bayesian personalized ranking from implicit feedback[C]//Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence. Montreal, Canada, 2009:452-461.
Similar References:

Memo

-

Last Update: 2021-06-25

Copyright © CAAI Transactions on Intelligent Systems