[1]MAO Mingyi,WU Chen,ZHONG Yixin,et al.BERT named entity recognition model with self-attention mechanism[J].CAAI Transactions on Intelligent Systems,2020,15(4):772-779.[doi:10.11992/tis.202003003]
Copy

BERT named entity recognition model with self-attention mechanism

References:
[1] 刘浏, 王东波. 命名实体识别研究综述[J]. 情报学报, 2018, 37(3): 329-340
LIU Liu, WANG Dongbo. A review on named entity recognition[J]. Journal of the China society for scientific and technical information, 2018, 37(3): 329-340
[2] BIKEL D M. An algorithm that learns what’s in a name[J]. Machine learning, 1999, 34(1/2/3): 211-231.
[3] MAYFIELD J, MCNAMEE P, PIATKO C D, et al. Named entity recognition using hundreds of thousands of features[C]//North American Chapter of the Association for Computational Linguistics. Edmonton, Canada, 2003: 184-187.
[4] MCCALLUM A, LI W. Early results for named entity recognition with conditional random fields, feature induction and web-enhanced lexicons[C]//North American Chapter of the Association for Computational Linguistics. Edmonton, Canada, 2003: 188-191.
[5] COLLOBERT R, WESTON J, BOTTOU L, et al. Natural language processing (almost) from scratch[J]. Journal of machine learning research, 2011, 12(1): 2493-2537.
[6] HUANG Z, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging[EB/OL].[2015-08-09]. https://arxiv.org/abs/1508.01991.
[7] MA X, HOVY E. End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Berlin, Germany, 2016: 1064-1074.
[8] LUO L, YANG Z, YANG P, et al. An attention-based BiLSTM-CRF approach to document-level chemical named entity recognition[J]. Bioinformatics, 2018, 34(8): 1381-1388.
[9] YANG Y, CHEN W, LI Z, et al. Distantly supervised NER with partial annotation learning and reinforcement learning[C]//International Conference on Computational Linguistics. Santa Fe, USA, 2018: 2159-2169.
[10] 彭嘉毅, 方勇, 黄诚, 等. 基于深度主动学习的信息安全领域命名实体识别研究[J]. 四川大学学报(自然科学版), 2019, 56(3): 457-462
PENG Jiayi, FANG Yong, HUANG Cheng, et al. Cyber security named entity recognition based on deep active learning[J]. Journal of sichuan university (natural science edition), 2019, 56(3): 457-462
[11] 朱艳辉, 李飞, 冀相冰, 等. 反馈式K近邻语义迁移学习的领域命名实体识别[J]. 智能系统学报, 2019, 14(4): 820-830
ZHU Yanhui, LI Fei, JI Xiangbing, et al. Domain-named entity recognition based on feedback k-nearest semantic transfer learning[J]. CAAI transactions on intelligent systems, 2019, 14(4): 820-830
[12] 王红斌, 沈强, 线岩团. 融合迁移学习的中文命名实体识别[J]. 小型微型计算机系统, 2017, 38(2): 346-351
WANG Hongbin, SHEN Qiang, XIAN Yantuan. Research on Chinese named entity recognition fusing transfer learning[J]. Journal of Chinese computer systems, 2017, 38(2): 346-351
[13] 冯鸾鸾, 李军辉, 李培峰, 等. 面向国防科技领域的技术和术语识别方法研究[J]. 计算机科学, 2019, 46(12): 231-236
FENG Luanluan, LI Junhui, LI Peifeng, et al. Technology and terminology detection oriented national defense science[J]. Computer science, 2019, 46(12): 231-236
[14] 杨维, 孙德艳, 张晓慧, 等. 面向电力智能问答系统的命名实体识别算法[J]. 计算机工程与设计, 2019, 40(12): 3625-3630
YANG Wei, SUN Deyan, ZHANG Xiaohui, et al. Named entity recognition for intelligent answer system in power service[J]. Computer engineering and design, 2019, 40(12): 3625-3630
[15] 李冬梅, 檀稳. 植物属性文本的命名实体识别方法研究[J]. 计算机科学与探索, 2019, 13(12): 2085-2093
LI Dongmei, TAN Wen. Research on named entity recognition method in plant attribute text[J]. Journal of frontiers of computer science and technology, 2019, 13(12): 2085-2093
[16] ZHANG Y, YANG J. Chinese NER using lattice LSTM[C]//Annual meeting of the association for computational linguistics. Melbourne, Australia, 2018: 1554-1564.
[17] 李明扬, 孔芳. 融入自注意力机制的社交媒体命名实体识别[J]. 清华大学学报(自然科学版), 2019, 59(6): 461-467
LI Mingyang, KONG Fang. Combined self-attention mechanism for named entity recognition in social media[J]. Journal of Tsinghua university (science and technology edition), 2019, 59(6): 461-467
[18] CAO P, CHEN Y, LIU K, et al. Adversarial transfer learning for Chinese named entity recognition with self-attention mechanism[C]//Conference on Empirical Methods in Natural Language Processing. Brussels, Belgium, 2018: 182-192.
[19] PETERS M E, RUDER S, SMITH N A, et al. To tune or not to tune? Adapting pretrained representations to diverse tasks.[C]//Proceedings of the 4th Workshop on Representation Llearning for NLP. Florence, Italy, 2019: 7-14.
[20] DEVLIN J, CHANG M, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[J]. Computation and language, 2018(10): 1810-4805.
[21] YANG Z, DAI Z, YANG Y, et al. XLNet: generalized autoregressive pretraining for language understanding[C]// Neural Information Processing Systems. Vancouver, Canada, 2019: 5753-5763.
[22] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780.
[23] LAFFERTY J, MCCALLUM A, PEREIRA F, et al. Conditional random fields: probabilistic models for segmenting and labeling sequence data[C]//International Conference on Machine Learning. San Francisco, USA, 2001: 282-289.
[24] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st Annual Conference on Neural Information Processing Systems. Long Beach, USA, 2017: 5998-6008.
[25] HE H, SUN X. F-Score driven max margin neural network for named entity recognition in Chinese social media[C]// Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics. Valencia, Spain, 2017: 713-718.
Similar References:

Memo

-

Last Update: 2020-07-25

Copyright © CAAI Transactions on Intelligent Systems