[1]LI Xiuquan.Main features and development trend in current artificial intelligence technology innovation[J].CAAI Transactions on Intelligent Systems,2020,15(2):409-412.[doi:10.11992/tis.202001030]
Copy

Main features and development trend in current artificial intelligence technology innovation

References:
[1] KIM B, WATTENBERG M, GILMER J, et al. Interpretability beyond feature attribution: quantitative Testing with Concept Activation Vectors (TCAV)[C]//Proceedings of the 35th International Conference on Machine Learning 2018. Stockholm, Sweden, 2018: 2673-2682.
[2] BATTAGLIA P W, HAMRICK J B, BAPST V, et al. Relational inductive biases, deep learning, and graph networks[EB/OL]. https://arxiv.org/abs/1806.0126.
[3] KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar, 2014: 1746-1751.
[4] PETERS M E, NEUMANN M, IYYER M, et al. Deep contextualized word representations[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics (NAACL). Louisiana, USA, 2018.
[5] DEVLIN J, CHANG Mingwei, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (NAACL). Minneapolis, MN, USA, 2019.
[6] KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 26th Annual Conference on Neural Information Processing Systems (NIPS). Lake Tahoe, USA, 2012: 1097-1105.
[7] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[EB/OL]. https://arxiv.org/abs/1512.03385.
[8] STRUBELL E, GANESH A, MCCALLUM A. Energy and policy considerations for deep learning in NLP[C]//Proceedings of the 57th Conference of the Association for Computational Linguistics. Florence, Italy, 2019.
[9] ABADI M, AGARWAL A, BARHAM P, et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems[EB/OL]. https://arxiv.org/abs/1603.04467v1.
[10] PASZKE A, GROSS S, MASSA F, et al. PyTorch: An imperative style, high-performance deep learning library[EB/OL]. https://arxiv.org/abs/1912.01703?context=cs.LG.
[11] JOUPPI N P, YOUNG C, PATIL N, et al. In-datacenter performance analysis of a tensor processing unit[C]//Proceedings of the 44th Annual International Symposium on Computer Architecture (ISCA). Toronto, Canada, 2017: 1-12.
[12] NVIDIA. GPU-based deep learning inference: a performance and power analysis[EB/OL]. California: NVIDIA, 2015. (2015-11)[2020-03-25]. https://www.nvidia.com/content/tegra/embedded-systems/pdf/jetson_tx1_whitepaper.pdf.
[13] SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529(7587): 484-489.
[14] ULLMAN S. Using neuroscience to develop artificial intelligence[J]. Science, 2019, 363(6428): 692-693.
[15] ROY K, JAISWAL A, PANDA P. Towards spike-based machine intelligence with neuromorphic computing[J]. Nature, 2019, 575(7784): 607-617.
[16] PEI Jing, DENG Lei, SONG Sen, et al. Towards artificial general intelligence with hybrid Tianjic chip architecture[J]. Nature, 2019, 572(7767): 106-111.
[17] YING Mingsheng. Quantum computation, quantum theory and AI[J]. Artificial intelligence, 2010, 174(2): 162-176.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems