[1]LIN Feng,YANG Zhongcheng,FENG Ying,et al.Binocular camera based face liveness detection with optimized scene illumination recognition[J].CAAI Transactions on Intelligent Systems,2020,15(1):160-165.[doi:10.11992/tis.201912026]
Copy

Binocular camera based face liveness detection with optimized scene illumination recognition

References:
[1] WILD P, RADU P, CHEN Lulu, et al. Robust multimodal face and fingerprint fusion in the presence of spoofing attacks[J]. Pattern recognition, 2016, 50: 17–25.
[2] BOULKENAFET Z, KOMULAINEN J, HADID A. Face anti-spoofing based on color texture analysis[C]//Proceedings of 2015 IEEE International Conference on Image Processing. Quebec City, Canada, 2015: 2636–2640.
[3] PINTO A, SCHWARTZ W R, PEDRINI H, et al. Using visual rhythms for detecting video-based facial spoof attacks[J]. IEEE transactions on information forensics and security, 2015, 10(5): 1025–1038.
[4] ATOUM Y, LIU Yaojie, JOURABLOO A, et al. Face anti-spoofing using patch and depth-based CNNs[C]//Proceedings of 2017 IEEE International Joint Conference on Biometrics. Denver, USA, 2017.
[5] LIU Yaojie, JOURABLOO A, LIU Xiaoming. Learning deep models for face anti-spoofing: binary or auxiliary supervision[J]. arXiv: 1803.11097, 2018.
[6] JOURABLOO A, LIU Yaojie, LIU Xiaoming. Face de-spoofing: anti-spoofing via noise modeling[J]. arXiv: 1807.09968, 2018.
[7] LIU Yaojie, STEHOUWER J, JOURABLOO A, et al. Deep tree learning for zero-shot face anti-spoofing[J]. arXiv: 1904.02860, 2019.
[8] 陈远浩. 一种基于红外可见双目图像的活体检测方法及装置[P]. 中国: CN106372601A, 2017-02-01.
[9] HE Kaiming, ZHANG Xiangyu, REN Shaoqing. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016.
[10] SKOGESTAD S. Simple analytic rules for model reduction and PID controller tuning[J]. Journal of process control, 2003, 13(4): 291–309.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems