[1]LIN Zhenxian,ZHANG Mengkai,WU Chengmao.Image restoration with residual dense network[J].CAAI Transactions on Intelligent Systems,2021,16(3):442-448.[doi:10.11992/tis.201912002]
Copy

Image restoration with residual dense network

References:
[1] 程俊廷, 左旺孟. 快速非均匀模糊图像的盲复原模型[J]. 黑龙江科技大学学报, 2017, 27(2):196-199
CHENG Junting, ZUO Wangmeng. Fast blind deblurring models for restoration of non-uniform blur images[J]. Journal of Heilongjiang University of Science and Technology, 2017, 27(2):196-199
[2] BANHAM M R, KATSAGGELOS A K. Digital image restoration[J]. IEEE signal processing magazine, 1997, 14(2):24-41.
[3] ZHOU Y T, CHELLAPPA R, VAID A, et al. Image restoration using a neural network[J]. IEEE transactions on acoustics, speech, and signal processing, 1988, 36(7):1141-1151.
[4] JAIN V, SEUNG S. Natural image denoising with convolutional networks[C]//Advances in Neural Information Processing Systems. Vancouver, Canada, 2009:769-776.
[5] HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017:2261-2269.
[6] ZHANG Kai, ZUO Wangmeng, CHEN Yunjin, et al. Beyond a Gaussian denoiser:residual learning of deep CNN for image denoising[J]. IEEE transactions on image processing, 2017, 26(7):3142-3155.
[7] LIU Ding, WEN Bihan, FAN Yuchen, et al. Non-local recurrent network for image restoration[C]//32nd Conference on Neural Information Processing Systems. Montréal, Canada, 2018:1673-1682.
[8] GUO Shi, YAN Zifei, ZHANG Kai, et al. Toward convolutional blind denoising of real photographs[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA, 2019:1712-1722.
[9] CHA S, MOON T. Fully convolutional pixel adaptive image denoiser[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul, Korea (South), 2019:4159-4168.
[10] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada, 2014:2672-2680.
[11] KUPYN O, BUDZAN V, MYKHAILYCH M, et al. DeblurGAN:blind motion deblurring using conditional adversarial networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018:8183-8192.
[12] WANG M, LI H, LI F. Generative adversarial network based on resnet for conditional image restoration[EB/OL].[2021?06?07] https://arxiv.org/abs/1707.04881.
[13] ZHOU H, SUN J, YACOOB Y, et al. Label denoising adversarial network (LDAN) for inverse lighting of faces[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018:6238-6247.
[14] ZHANG Yulun, TIAN Yapeng, KONG Yu, et al. Residual dense network for image super-resolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018:2472-2481.
[15] SAJJADI M S M, SCH?LKOPF B, HIRSCH M. EnhanceNet:single image super-resolution through automated texture synthesis[C]//Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy, 2017:4501-4510.
[16] ADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[EB/OL].[2021?06?07] https://arxiv.org/abs/1511.06434.
[17] ZHAO Hang, GALLO O, FROSIO I, et al. Loss functions for image restoration with neural networks[J]. IEEE transactions on computational imaging, 2017, 3(1):47-57.
[18] WHYTE O, SIVIC J, ZISSERMAN A, et al. Non-uniform deblurring for shaken images[J]. International journal of computer vision, 2012, 98(2):168-186.
[19] NAH S, KIM T H, LEE K M. Deep multi-scale convolutional neural network for dynamic scene deblurring[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017:257-265.
[20] BENGIO Y, LOURADOUR J, COLLOBERT R, et al. Curriculum learning[C]//Proceedings of the 26th Annual International Conference on Machine Learning. Montreal, Canada, 2009:41-48.
[21] 佟雨兵, 张其善, 祁云平. 基于PSNR与SSIM联合的图像质量评价模型[J]. 中国图象图形学报, 2006, 11(12):1758-1763
TONG Yubing, ZHANG Qishan, QI Yunping. Image quality assessing by combining PSNR with SSIM[J]. Journal of image and graphics, 2006, 11(12):1758-1763
[22] WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment:from error visibility to structural similarity[J]. IEEE transactions on image processing, 2004, 13(4):600-612.
[23] TAO Xin, GAO Hongyun, SHEN Xiaoyong, et al. Scale-recurrent network for deep image deblurring[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018:8174-8182.
Similar References:

Memo

-

Last Update: 2021-06-25

Copyright © CAAI Transactions on Intelligent Systems