[1]ZHANG Min,ZHOU Zhiping.An autoencoder-based spectral clustering algorithm combined with metric fusion and landmark representation[J].CAAI Transactions on Intelligent Systems,2020,15(4):687-696.[doi:10.11992/tis.201911039]
Copy

An autoencoder-based spectral clustering algorithm combined with metric fusion and landmark representation

References:
[1] WANG Lijuan, DING Shifei, JIA Hongjie. An improvement of spectral clustering via message passing and density sensitive similarity[J]. IEEE access, 2019, 7: 101054-101062.
[2] LI Xinning, ZHAO Xiaoxiao, CHU Derun, et al. An autoencoder-based spectral clustering algorithm[J]. Soft computing, 2020, 24(3): 1661-1671.
[3] 王一宾, 李田力, 程玉胜. 结合谱聚类的标记分布学习[J]. 智能系统学报, 2019, 14(5): 966-973
WANG Yibin, LI Tianli, CHENG Yusheng. Label distribution learning based on spectral clustering[J]. CAAI transactions on intelligent systems, 2019, 14(5): 966-973
[4] 赵晓晓, 周治平. 结合稀疏表示与约束传递的半监督谱聚类算法[J]. 智能系统学报, 2018, 13(5): 855-863
ZHAO Xiaoxiao, ZHOU Zhiping. A semi-supervised spectral clustering algorithm combined with sparse representation and constraint propagation[J]. CAAI transactions on intelligent systems, 2018, 13(5): 855-863
[5] LANGONE R, SUYKENS J A K. Fast kernel spectral clustering[J]. Neurocomputing, 2017, 268: 27-33.
[6] ZHAN Qiang, MAO Yu. Improved spectral clustering based on Nystr?m method[J]. Multimedia tools and applications, 2017, 76(19): 20149-20165.
[7] YANG Xiaojun, YU Weizhong, WANG Rong, et al. Fast spectral clustering learning with hierarchical bipartite graph for large-scale data[J]. Pattern recognition letters, 2020, 130(2): 345-352.
[8] CHEN Xinlei, CAI Deng. Large scale spectral clustering with landmark-based representation[C]//Proceedings of the 24th AAAI Conference on Artificial Intelligence. San Francisco, USA, 2011: 313-318.
[9] CAI Deng, CHEN Xinlei. Large scale spectral clustering via landmark-based sparse representation[J]. IEEE trans cybern, 2015, 45(8): 1669-1680.
[10] 叶茂, 刘文芬. 基于快速地标采样的大规模谱聚类算法[J]. 电子与信息学报, 2017, 39(2): 278-284
YE Mao, LIU Wenfen. Large scale spectral clustering based on fast landmark sampling[J]. Journal of electronics and information technology, 2017, 39(2): 278-284
[11] ZHANG Xianchao, ZONG Linlin, YOU Quanzeng, et al. Sampling for Nystr?m extension-based spectral clustering: incremental perspective and novel analysis[J]. ACM transactions on knowledge discovery from data, 2016, 11(1): 1-25.
[12] 邓思宇, 刘福伦, 黄雨婷, 等. 基于PageRank的主动学习算法[J]. 智能系统学报, 2019, 14(3): 551-559
DENG Siyu, LIU Fulun, HUANG Yuting, et al. Active learning through PageRank[J]. CAAI transactions on intelligent systems, 2019, 14(3): 551-559
[13] RAFAILID D, CONSTANTINOU E, MANOLOPOULOS Y. Landmark selection for spectral clustering based on weighted PageRank[J]. Future generation computer systems, 2017, 68: 465-472.
[14] LIU Li, SUN Letian, CHEN Shiping, et al. K-PRSCAN: A clustering method based on PageRank[J]. Neurocomputing, 2016, 175: 65-80.
[15] JIA Hongjie, DING Shifei, DU Mingjing, et al. Approximate normalized cuts without eigen-decomposition[J]. Information sciences, 2016, 374: 135-150.
[16] TIAN Fei, GAO Bin, CUI Qing, et al. Learning deep representations for graph clustering[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence. Québec, Canada, 2014: 1293-1299.
[17] BANIJAMALI E, GHODSI A. Fast spectral clustering using autoencoders and landmarks[C]//Proceedings of International Conference Image Analysis and Recognition. Montreal, Canada, 2017: 380-388.
[18] 光俊叶, 邵伟, 孙亮, 等. 基于融合欧氏距离与Kendall Tau距离度量的谱聚类算法[J]. 控制理论与应用, 2017, 34(6): 783-789
GUANG Junye, SHAO Wei, SUN Liang, et al. Spectral clustering with mixed Euclidean and Kendall Tau metrics[J]. Control theory & applications, 2017, 34(6): 783-789
[19] WEI Kai, TIAN Pingfang, GU Jingguang, et al. RDF data assessment based on metrics and improved PageRank algorithm[C]//Proceedings of International Conference on Database Systems for Advanced Applications. Suzhou, China, 2017: 204-212.
[20] 谢娟英, 丁丽娟. 完全自适应的谱聚类算法[J]. 电子学报, 2019, 47(5): 1000-1008
XIE Juanying, DING Lijuan. The true self-adaptive spectral clustering algorithms[J]. Acta electronica sinica, 2019, 47(5): 1000-1008
[21] NG A Y, JORDAN M I, WEISS Y. On spectral clustering: analysis and an algorithm[C]//Proceedings of Neural Information Processing Systems 14, NIPS 2001. Vancouver, British Columbia, Canada, 2002: 849-856.
[22] XIE Juanying, ZHOU Ying, DING Lijuan. Local standard deviation spectral clustering[C]// Proceedings of the 2018 IEEE International Conference on Big Data and Smart Computing (BigComp). Shanghai, China, 2018: 242-250.
[23] WANG Bo, JIANG Jiayan, WANG Wei, et al. Unsupervised metric fusion by cross diffusion[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, Rhode Island, 2012: 2997-3004.
[24] COIFMAN R R, LAFON S. Diffusion maps[J]. Applied and computational harmonic analysis, 2006, 21(1): 5-30.
[25] XIE Junyuan, GIRSHICK R B, FARHADI A. Unsupervised deep embedding for clustering analysis[C]//Proceedings of the 33nd International Conference on Machine Learning. New York, USA, 2016: 478-487.
Similar References:

Memo

-

Last Update: 2020-07-25

Copyright © CAAI Transactions on Intelligent Systems