[1]HU Lei,QIU Yunjun,WANG Xizhao,et al.Point cloud big data analysis and deep model research for line and slope fine-tuning[J].CAAI Transactions on Intelligent Systems,2020,15(4):795-803.[doi:10.11992/tis.201911027]
Copy

Point cloud big data analysis and deep model research for line and slope fine-tuning

References:
[1] 常占奎. 三维激光扫描仪在轨距提取中的应用研究[J]. 铁道建筑, 2018, 58(6): 137-139
CHANG Zhankui. Application research of 3D laser scanner in gauge extraction[J]. Railway engineering, 2018, 58(6): 137-139
[2] 薛懋, 王霄. 论三维激光扫描技术在地质测绘中的应用[J]. 世界有色金属, 2019(10): 87-91
XUE Mao, WANG Xiao. On the application of 3D laser scanning technology in geological surveying and mapping[J]. World nonferrous metals, 2019(10): 87-91
[3] 毕俊, 冯琰, 顾星晔, 等. 三维激光扫描技术在地铁隧道收敛变形监测中的应用研究[J]. 测绘科学, 2008(S2): 14-15
BI Jun, FENG Yan, GU Xingye, et al. Research on application of 3D laser scanning technology in metro tunnel convergence and deformation monitoring[J]. Science of surveying and mapping, 2008(S2): 14-15
[4] 托雷, 康志忠, 谢远成, 等. 利用三维点云大数据的地铁隧道断面连续截取方法研究[J]. 武汉大学学报(信息科学版), 2013(2): 49-53, 63
TUO Lei, KANG Zhizhong, XIE Yuancheng, et al. Research on continuous intercepting method of metro tunnel section using 3D point cloud big data[J]. Journal of Wuhan university( information science edition), 2013(2): 49-53, 63
[5] 康志忠, 托雷, 王保前, 等. 基于三维激光扫描的地铁隧道连续形变监测数据处理软件系统[J]. 测绘工程, 2013, 22(5): 82-86
KANG Zhizhong, TUO Lei, WANG Baoqian, et al. Data processing software system for continuous deformation monitoring of subway tunnel based on 3D laser scanning[J]. Engineering of surveying and mapping, 2013, 22(5): 82-86
[6] 谢雄耀, 卢晓智, 田海洋, 等. 基于地面三维激光扫描技术的隧道全断面变形测量方法[J]. 岩石力学与工程学报, 2013(11): 59-69
XIE Xiongyao, LU Xiaozhi, TIAN Haiyang, et al. Tunnel full-section deformation measurement method based on 3D ground laser scanning technology[J]. Chinese journal of rock mechanics and engineering, 2013(11): 59-69
[7] 潘国荣, 张超. 三维激光扫描在地铁隧道变形监测中的开发应用[J]. 东华理工大学学报(自然科学版), 2016(S1): 4-8
PAN Guorong, ZHANG Chao. Development and application of 3D laser scanning in metro tunnel deformation monitoring[J]. Journal of east China institute of technology(natural science edition), 2016(S1): 4-8
[8] 张明智, 张明栋. 三维激光扫描技术在地铁隧道变形监测中的应用[J]. 城市勘测, 2018(3): 25-29
ZHANG Mingzhi, ZHANG Mingdong. Application of 3D laser scanning technology in metro tunnel deformation monitoring[J]. Urban geotechnical investigation & surveying, 2018(3): 25-29
[9] 赵凌. 地铁站出入通道多摄像机移动目标跟踪研究[J]. 重庆理工大学学报( 自然科学版), 2019, 33(5): 95-101
ZHAO Ling. Study on moving target tracking of multi camera in subway access channel[J]. Journal of Chongqing university of technology( natural science edition), 2019, 33(5): 95-101
[10] 张瀚, 高飞. 一种点云配准新方法在隧道变形监测中的应用研究[J]. 信息通信, 2016(5): 21-23
ZHANG Han, GAO Fei. Application study of a new method of point cloud registration in tunnel deformation monitoring[J]. Introduction of bluetooth technology, 2016(5): 21-23
[11] 陈仁朋, 王诚杰, 鲁立, 等. 开挖对地铁盾构隧道影响及控制措施[J]. 工程力学, 2017(12): 1-13
CHEN Renpeng, WANG Chengjie, LU Li, et al. Influence of excavation on metro shield tunnel and control measures[J]. Engineering mechanics, 2017(12): 1-13
[12] 王兆宁. 铁路隧道建筑限界快速检测技术研究与应用[J]. 铁道建筑, 2019(3): 141-144
WANG Zhaoning. Research and application of rapid inspection technology for railway tunnel building boundary[J]. Railway engineering, 2019(3): 141-144
[13] HORNIK K, STINCHCOMBE M, WHITE H. Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks[J]. Neural networks, 1990, 3(5): 551-560.
[14] CHEN L, WU C. A note on the expressive power of deep rectified linear unit networks in high-dimensional spaces[J]. Mathematical methods in the applied sciences, 2019, 42(9): 3400-3404.
[15] CHEN Yali, YANG Yanping, FANG Qing. Discriminative region guided deep neural network towards food image classification[C]// CCF Chinese Conference on Computer Vision. Singapere, 2017: 425-434.
[16] 燕续峰, 翟少鹏, 王治华, 等. 深度神经网络在非侵入式负荷分解中的应用[J]. 电力系统自动化, 2019, 43(1): 171-180,224
YAN Xufeng, ZHAI Shaopeng, WANG Zhihua, et al. Application of deep neural network in non-intrusive load decomposition[J]. Automation of electrical power sytstem, 2019, 43(1): 171-180,224
[17] CAO W, GAO J, MING Z, et al. Fuzziness-based online sequential extreme learning machine for classification problems[J]. Soft Computing, 2018, 22: 3487-3494.
[18] CAO W, MING Z, XU Z, et al. Online sequential extreme learning machine with dynamic forgetting factor[J]. IEEE access, 2019, 7: 179746-179757.
[19] 何原荣, 郑渊茂, 潘火平, 等. 基于点云数据的复杂建筑体真三维建模与应用[J]. 遥感技术与应用, 2016(6): 1091-1099
HE Yuanrong, ZHENG Yuanmao, PAN Huoping, et al. 3D modeling and application of complex building based on point cloud data[J]. Remote sensing technology and application, 2016(6): 1091-1099
[20] 贾鹤鸣, 孟羽佳, 邢致恺, 等. 基于点云拼接的植物三维模型重建[J]. 应用科技, 2019, 46(1): 19-24
JIA Heming, MENG Yujia, XING Zhikai, et al. Reconstruction of three dimensional model of plant based on point cloud stitching[J]. Applied Science and Technology, 2019, 46(1): 19-24
[21] 陈兵. 轨道交通调线调坡设计相关研究[J]. 铁道勘测与设计, 2014(3): 25-29
CHEN Bing. Relative research on slope design of rail transit[J]. Railway survey and design, 2014(3): 25-29
[22] 王智, 李勇, 张洪德, 等. 三维激光扫描技术在地铁隧道施工质量检测中的应用研究[J]. 城市勘测, 2018(3): 114-116
WANG Zhi, LI Yong, ZHANG Hongde, et al. Application research of 3D laser scanning technology in metro tunnel construction quality inspection[J]. Urban exploration and survey, 2018(3): 114-116
[23] WANG J, WEN Y, GOU Y, et al. Fractional-order gradient descent learning of BP neural networks with Caputo derivative.[J]. Neural networks, 2017, 89: 19-30.
[24] HAN K, YU D. Speech emotion recognition using deep neural network and extreme learning machine[J]. Interspeech, 2014(4): 223-227.
[25] GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[J]. Journal of machine learning research, 2010, 15: 315-323.
[26] KERMANY D, GOLDBAUM M, CAI W. Identifying medical diagnoses and treatable diseases by image-based deep learning. [J]. Cell, 2018, 172(5): 1122.
Similar References:

Memo

-

Last Update: 2020-07-25

Copyright © CAAI Transactions on Intelligent Systems