[1]LU Jianfeng,GUO Maozu,ZHANG Yu,et al.Stay point recognition method based on spatio-temporal constraint density clustering[J].CAAI Transactions on Intelligent Systems,2020,15(1):59-66.[doi:10.11992/tis.201910026]
Copy

Stay point recognition method based on spatio-temporal constraint density clustering

References:
[1] 吕志娟. 基于Lifelog数据的个人轨迹模式挖掘算法的研究与应用[D]. 沈阳: 东北大学, 2015: 20–30.
LYU Zhijuan. Research and application of personal trajectory pattern mining algorithm based on Lifelog data[D]. Shenyang: Northeastern University, 2015: 20–30.
[2] JIANG Renhe, ZHAO Jing, DONG Tingting, et al. A density-based approach for mining movement patterns from semantic trajectories[C]//TENCON 2015-2015 IEEE Region 10 Conference. Macao, China, 2015.
[3] 张文元, 谈国新, 朱相舟. 停留点空间聚类在景区热点分析中的应用[J]. 计算机工程与应用, 2018, 54(4): 263–270
ZHANG Wenyuan, TAN Guoxin, ZHU Xiangzhou. Application of stay points spatial clustering in hot scenic spots analysis[J]. Computer engineering and applications, 2018, 54(4): 263–270
[4] 杨震, 王红军. 基于Adaboost-Markov模型的移动用户位置预测方法[J]. 计算机应用, 2019, 39(3): 675–680
YANG Zhen, WANG Hongjun. Location prediction method of mobile user based on Adaboost-Markov model[J]. Journal of computer applications, 2019, 39(3): 675–680
[5] 石陆魁, 张延茹, 张欣. 基于时空模式的轨迹数据聚类算法[J]. 计算机应用, 2017, 37(3): 854–859, 895
SHI Lukui, ZHANG Yanru, ZHANG Xin. Trajectory data clustering algorithm based on spatiotemporal pattern[J]. Journal of computer applications, 2017, 37(3): 854–859, 895
[6] FU Zhongliang, TIAN Zongshun, XU Yanqing, et al. A two-step clustering approach to extract locations from individual GPS trajectory data[J]. ISPRS international journal of geo-information, 2016, 5(10): 166.
[7] XIANG Longgang, GAO Meng, WU Tao. Extracting stops from noisy trajectories: a sequence oriented clustering approach[J]. ISPRS international journal of geo-information, 2016, 5(3): 29.
[8] GONG Lei, SATO H, YAMAMOTO T, et al. Identification of activity stop locations in GPS trajectories by density-based clustering method combined with support vector machines[J]. Journal of modern transportation, 2015, 23(3): 202–213.
[9] GONG Lei, YAMAMOTO T, MORIKAWA T. Identification of activity stop locations in GPS trajectories by DBSCAN-TE method combined with support vector machines[J]. Transportation research procedia, 2018, 32: 146–154.
[10] GINGERICH K, MAOH H, ANDERSON W. Classifying the purpose of stopped truck events: an application of entropy to GPS data[J]. Transportation research part C: emerging technologies, 2016, 64: 17–27.
[11] 张鹏. 基于蜂窝网络数据的用户移动性分析和兴趣区挖掘[D]. 北京: 北京邮电大学, 2018: 31–52.
ZHANG Peng. User mobility research and interest region mining based on cellular networks traffic[D]. Beijing: Beijing University of Posts and Telecommunications, 2018: 31–52.
[12] 向隆刚, 邵晓天. 载体轨迹停留信息提取的核密度法及其可视化[J]. 测绘学报, 2016, 45(9): 1122–1131
XIANG Longgang, SHAO Xiaotian. Visualization and extraction of trajectory stops based on kernel-density[J]. Acta geodaetica et cartographica sinica, 2016, 45(9): 1122–1131
[13] LIAO Lin, FOX D, KAUTZ H. Extracting places and activities from GPS traces using hierarchical conditional random fields[J]. International journal of robotics research, 2007, 26(1): 119–134.
[14] 李毓瑞, 陈红梅, 王丽珍, 等. 基于密度的停留点识别方法[J]. 大数据, 2018, 4(5): 80–93
LI Yurui, CHEN Hongmei, WANG Lizhen, et al. Stay point identification based on density[J]. Big data research, 2018, 4(5): 80–93
[15] 杜润强. 基于手机轨迹数据的用户出行及停驻点识别系统研究[D]. 北京: 北京工业大学, 2014: 35–45.
DU Runqiang. The research on users’ movements and stay point identification based on mobile data[D]. Beijing: Beijing University of Technology, 2014: 35–45.
[16] HERDER E, SIEHNDEL P, KAWASE R. Predicting user locations and trajectories[M]//DIMITROVA V, KUFLIK T, CHIN D, et al. User Modeling, Adaptation, and Personalization. Cham: Springer, 2014: 86–97.
[17] DAMIANI M L, GüTING R H. Semantic trajectories and beyond[C]//Proceedings of 2014 IEEE 15th International Conference on Mobile Data Management. Brisbane, Australia, 2014.
[18] KHOSHAHVAL S, FARNAGHI M, TALEAI M. Spatio-temporal pattern mining on trajectory data using ARM[J]. International archives of the photogrammetry, remote sensing and spatial information sciences, 2017, XLⅡ-4/W4: 395–399.
[19] Sussex-Huawei locomotion dataset[EB/OL]. http://www.shl-dataset.org/download/.
[20] ZHENG Yu. Trajectory data mining: an overview[J]. ACM transactions on intelligent systems and technology, 2015, 6(3): 29–36.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems