[1]LIU Jinping,ZHOU Jiaming,HE Junbin,et al.Spectral clustering-fused adaptive synthetic oversampling approach for imbalanced data processing[J].CAAI Transactions on Intelligent Systems,2020,15(4):732-739.[doi:10.11992/tis.201909062]
Copy

Spectral clustering-fused adaptive synthetic oversampling approach for imbalanced data processing

References:
[1] LESSMANN S, BAESENS B, SEOW H V, et al. Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research[J]. European journal of operational research, 2015, 247(1): 124-36.
[2] LIU J, HE J, ZHANG W, et al. TCvBsISM: Texture classification via B-splines-based image statistical modeling[J]. IEEE access, 2018, 6(1): 76-93.
[3] 翟云, 杨炳儒, 曲武. 不平衡类数据挖掘研究综述[J]. 计算机科学, 2010, 37(10): 27-32
ZHAI Yun, YANG Bingru, QU Wu. Survey of mining imbalanced datasets[J]. Computer science, 2010, 37(10): 27-32
[4] LIN W C, TSAI C F, HU Y H, et al. Clustering-based undersampling in class-imbalanced data[J]. Information sciences, 2017, 17(2): 409-410.
[5] HE H, GARCIA E A. Learning from imbalanced data[J]. IEEE transactions on knowledge & data engineering, 2009, 21(9): 1263-84.
[6] LIU J, TANG Z, ZHANG J, et al. Visual perception-based statistical modeling of complex grain image for product quality monitoring and supervision on assembly production line[J]. Plos one, 2016, 11(3): 1-25.
[7] 刘天羽, 李国正, 尤鸣宇. 不均衡故障诊断数据上的特征选择[J]. 小型微型计算机系统, 2009, 30(5): 924-927
LIU Tianyu, LI Guozheng, YOU Mingyu. Feature selection on unbalanced fault diagnosis data[J]. Journal of Chinese computer systems, 2009, 30(5): 924-927
[8] YUAN X, XIE L, ABOUELENIEN M. A regularized ensemble framework of deep learning for cancer detection from multi-class, imbalanced training data[J]. Pattern recognition, 2018, 77(1): 160-72.
[9] LIU J, HE J, ZHANG W, et al. ANID-SEoKELM: adaptive network intrusion detection based on selective ensemble of kernel ELMs with random features[J]. Knowledge-based systems, 2019, 177(1): 104-16.
[10] 刘金平, 张五霞, 唐朝晖, 等. 基于模糊粗糙集属性约简与GMM-LDA最优聚类簇特征学习的自适应网络入侵检测[J]. 控制与决策, 2019, 34(2): 243-251
LIU Jinping, ZHANG Wuxia, TANG Zhaohui, et al. Adaptive network intrusion detection based on fuzzy rough set-based attribute reduction and GMM-LDA-based optimal cluster feature learning[J]. Control and decision, 2019, 34(2): 243-251
[11] FOTOUHI S, ASADI S, KATTAN M W. A comprehensive data level analysis for cancer diagnosis on imbalanced data[J]. Journal of biomedical informatics, 2018, 90(1): 1-29.
[12] ZHOU P, HU X, LI P, et al. Online feature selecton for high dimensional class-imbalanced data[J]. Knowledge-based systems, 2017, 136(15): 187-199.
[13] QIAN Y, LIANG Y, LI M, et al. A resampling ensemble algorithm for classification of imbalance problems[J]. Neurocomputing, 2014, 143(2): 57-67.
[14] LIU M, XU C, LUO Y, et al. Cost-sensitive feature selection by optimizing F-Measures[J]. IEEE transactions on image processing, 2018, 27(3): 1323-35.
[15] 吴雨茜, 王俊丽, 杨丽, 等. 代价敏感深度学习方法研究综述[J]. 计算机科学, 2019, 46(5): 8-19
WU Yuqian, WANG Junli, YANG Li, et al. Survey on cost-sensitive deep learning methods[J]. Computer science, 2019, 46(5): 8-19
[16] HE H, BAI Y, GARCIA E A, et al. ADASYN: Adaptive synthetic sampling approach for imbalanced learning[C]// Neural Networks. Hong Kong, China, 2008, 3641-46
[17] AHMAD J, JAVED F, HAYAT M. Intelligent computational model for classification of sub-Golgi protein using oversampling and fisher feature selection methods[J]. Artificial intelligence in medicine, 2017, 78(1): 14-16.
[18] LIN W C, TSAI C F, HU Y H, et al. Clustering-based undersampling in class-imbalanced data[J]. Information sciences, 2017, 17(2): 409-410.
[19] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of artificial intelligence research, 2011, 16(1): 321-357.
[20] 蔡晓妍, 戴冠中, 杨黎斌. 谱聚类算法综述[J]. 计算机科学, 2008(7): 14-18
CAI Xiaoyan, DAI Guanzhong, YANG Libin. Survey on spectral clustering algorithms[J]. Computer science, 2008(7): 14-18
[21] NG A Y, JORDAN M I, WEISS Y. On spectral clustering: Analysis and an algorithm[C]//Proceedings of the Advances in Neural Information Processing Systems. Berkeley, USA, 2002: 26-34.
[22] 刘金平, 周嘉铭, 刘先锋, 等. 基于聚类簇结构特性的自适应综合采样法在入侵检测中的应用[J/OL]. 控制与决策: https://doi.org/10.1n3195/j.kzyjc.2019.1672.
LIU Jinping, ZHOU Jiaming, LIU Xianfeng, et al.Toward intrusion detection via cluster-structure characteristics-based adaptive synthetic sampling approach[J/OL]. Control and decision: https://doi.org/10.13195/j.kzyjc.2019.1672.
[23] CHAUHAN V K, DAHIYA K, SHARMA A. Problemformulations and solvers in linear SVM: a review[J]. Artificial intelligence review, 2018, 6(1): 1-53.
[24] PAUL A, MUKHERJEE D P, DAS P, et al. Improved random forest for classification[J]. IEEE transactionson image processing, 2018, 27(8): 4012-24.
[25] ZHANG S, DENG Z, CHENG D, et al. Efficient KNN classification algorithm for big data[J]. Neurocomputing, 2016, 195(26): 143-8.
[26] 林智勇, 郝志峰, 杨晓伟. 若干评价准则对不平衡数据学习的影响[J]. 华南理工大学学报(自然科学版), 2010, 38(4): 147-155
LIN Zhiyong, HAO Zhifeng, YANG Xiaowei. The influence of several evaluation criteria on unbalanced data learning[J]. Journal of South China University of Technology (natural science edition), 2010, 38(4): 147-155
[27] THARWAT A. Classification assessment methods[J]. Applied computing and informatics, 2018, 12(1): 1-13.
Similar References:

Memo

-

Last Update: 2020-07-25

Copyright © CAAI Transactions on Intelligent Systems