[1]WU Guodong,ZHA Zhikang,TU Lijing,et al.Research advances in graph neural network recommendation[J].CAAI Transactions on Intelligent Systems,2020,15(1):14-24.[doi:10.11992/tis.201908034]
Copy

Research advances in graph neural network recommendation

References:
[1] ZHOU J, CUI G, ZHANG Z, et al. Graph neural networks: a review of methods and applications[J]. arXiv: 1812.08434, 2018.
[2] BASTINGS J, TITOV I, AZIZ W, et al. Graph convolutional encoders for syntax-aware neural machine translation[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Copenhagen, Denmark, 2017: 1957?1967.
[3] HENAFF M, BRUNA J, LECUN Y. Deep convolutional networks on graph-structured data[J]. arXiv:1506.05163, 2015.
[4] ZHANG Yuhao, QI Peng, MANNING C D. Graph convolution over pruned dependency trees improves relation extraction[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Brussels, Belgium, 2018: 2205?2215.
[5] WANG Xiaolong, YE Yufei, GUPTA A. Zero-shot recognition via semantic embeddings and knowledge graphs[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018: 6857?6866.
[6] RHEE S,SEO S, KIM S.Hybrid approach of relation network and localized graph convolutional filtering for breast cancer subtype classification[J].arXiv: 1711.05859,2017.
[7] KAWAMOTO T, TSUBAKI M, OBUCHI T. Mean-field theory of graph neural networks in graph partitioning[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, USA, 2018: 4361?4371.
[8] HAMILTON W, YING Zhotao, LESKOVEC J. Inductive representation learning on large graphs[C]//Advances in Neural Information Processing Systems. Long Beach, US, 2017: 1024?1034.
[9] CHEN J, MA T, XIAO C. Fastgcn: fast learning with graph convolutional networks via importance sampling[J]. arXiv:1801.10247, 2018.
[10] CHEN Jianfei, ZHU Jun, SONG Le. Stochastic training of graph convolutional networks with variance reduction[C]//Proceedings of the 35th International Conference on Machine Learning. Stockholm, Sweden, 2018: 941?949.
[11] LI Q, HAN Z, WU X M. Deeper insights into graph convolutional networks for semi-supervised learning[C]//Thirty-Second AAAI Conference on Artificial Intelligence. New Orleans, USA,2018.
[12] BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral networks and locally connected networks on graphs[C]//International Conference on Learning Representations (ICLR2014). Banff, Canada, 2014: 1?14.
[13] MONTI F, BOSCAINI D, MASCI J, et al. Geometric deep learning on graphs and manifolds using mixture model CNNs[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017: 5115?5124.
[14] ATWOOD J, TOWSLEY D. Diffusion-convolutional neural networks[C]//Advances in Neural Information Processing Systems. Barcelona, Spain, 2016: 1993?2001.
[15] LI Y, ZEMEL R, BROCKSCHMIDT M, et al. Gated graph sequence neural networks [J]. arXiv:1511.05493, 2015.
[16] ZHANG Yue, LIU Qi, SONG Linfeng. Sentence-state LSTM for text representation[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Melbourne, Australia, 2018: 317?327.
[17] KAMPFFMEYER M, CHEN Yinbo, LIANG Xiaodan, et al. Rethinking knowledge graph propagation for zero-shot learning[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA, 2019: 11487?11496.
[18] 黄璐, 林川杰, 何军, 等. 融合主题模型和协同过滤的多样化移动应用推荐[J]. 软件学报, 2017, 28(3): 708–720
HUANG Lu, LIN Chuanjie, HE Jun, et al. Diversified mobile app recommendation combining topic model and collaborative filtering[J]. Journal of software, 2017, 28(3): 708–720
[19] 胡堰, 彭启民, 胡晓惠. 一种基于隐语义概率模型的个性化Web服务推荐方法[J]. 计算机研究与发展, 2014, 51(8): 1781–1793
HU Yan, PENG Qimin, HU Xiaohui. A personalized Web service recommendation method based on latent semantic probabilistic model[J]. Journal of computer research and development, 2014, 51(8): 1781–1793
[20] 刘建勋, 石敏, 周栋, 等. 基于主题模型的Mashup标签推荐方法[J]. 计算机学报, 2017, 40(2): 520–534
LIU Jianxun, SHI Min, ZHOU Dong, et al. Topic model based tag recommendation method for Mashups[J]. Chinese journal of computers, 2017, 40(2): 520–534
[21] 曹俊豪, 李泽河, 江龙, 等. 一种融合协同过滤和用户属性过滤的混合推荐算法[J]. 电子设计工程, 2018, 26(9): 60–63
CAO Junhao, LI Zehe, JIANG Long, et al. A hybrid recommendation algorithm based on collaborative filtering and user attribute filtering[J]. Electronic design engineering, 2018, 26(9): 60–63
[22] 张双庆. 一种基于用户的协同过滤推荐算法[J]. 电脑知识与技术, 2019, 15(1): 19–21
ZHANG Shuangqing. User-based collaborative filtering recommendation algorithm[J]. Computer knowledge and technology, 2019, 15(1): 19–21
[23] 邓园园, 吴美香, 潘家辉. 基于物品的改进协同过滤算法及应用[J]. 计算机系统应用, 2019, 28(1): 182–187
DENG Yuanyuan, WU Meixiang, PAN Jiahui. Improved item-based collaborative filtering algorithm and its application[J]. Computer systems & applications, 2019, 28(1): 182–187
[24] 高玉凯, 王新华, 郭磊, 等. 一种基于协同矩阵分解的用户冷启动推荐算法[J]. 计算机研究与发展, 2017, 54(8): 1813–1823
GAO Yukai, WANG Xinhua, GUO Lei, et al. Learning to recommend with collaborative matrix factorization for new users[J]. Journal of computer research and development, 2017, 54(8): 1813–1823
[25] 王伟, 陈伟, 祝效国, 等. 众筹项目的个性化推荐: 面向稀疏数据的二分图模型[J]. 系统工程理论与实践, 2017, 37(4): 1011–1023
WANG Wei, CHEN Wei, ZHU K, et al. Personalized recommendation of crowd-funding campaigns: a bipartite graph approach for sparse data[J]. Systems engineering–theory & practice, 2017, 37(4): 1011–1023
[26] ELKAHKY A M, SONG Yang, HE Xiaodong. A multi-view deep learning approach for cross domain user modeling in recommendation systems[C]//Proceedings of the 24th International Conference on World Wide Web. Florence, Italy, 2015: 278?288.
[27] ZHENG Lei, NOROOZI V, YU P S. Joint deep modeling of users and items using reviews for recommendation[C]//Proceedings of the Tenth ACM International Conference on Web Search and Data Mining. New York, USA, 2017: 425?434.
[28] LIU Q, WU S, WANG L, et al. Predicting the next location: a recurrent model with spatial and temporal contexts[C]//Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. Arizona, USA,2016: 194?200.
[29] XU,KEYULU,et al.How powerful are graph neural networks [J]. arXiv:1810.00826, 2018.
[30] SONG Weiping, XIAO Zhiping, WANG Yifan, et al. Session-based social recommendation via dynamic graph attention networks[C]//Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining. New York, United States, 2019: 555?563.
[31] FAN Wenqi, MA Yao, LI Qing, et al. Graph neural networks for social recommendation[C]//The World Wide Web Conference. New York, USA, 2019: 417?426.
[32] YING R, HE Ruining, CHEN Kaifeng, et al. Graph convolutional neural networks for web-scale recommender systems[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA, 2018: 974?983.
[33] CUI Zeyu, LI Zekun, WU Shu, et al. Dressing as a whole: outfit compatibility learning based on node-wise graph neural networks[C]//The World Wide Web Conference. New York, USA, 2019: 307?317.
[34] WANG X, HE X, WANG M, et al. Neural graph collaborative filtering[J]. arXiv:1905.08108, 2019.
[35] WANG Hongwei, ZHAO Miao, XIE Xing, et al. Knowledge graph convolutional networks for recommender systems[C]//The World Wide Web Conference. San Francisco, USA, 2019: 3307?3313.
[36] MAO C, YAO L, LUO Y. MedGCN: Graph convolutional networks for multiple medical tasks[J]. arXiv: 1904.00326, 2019.
[37] 刘云, 王颖, 亓国涛, 等. 时间上下文的协同过滤Top-N推荐算法[J]. 计算机技术与发展, 2017, 27(7): 79–82
LIU Yun, WANG Ying, QI Guotao, et al. Collaborative filtering top-N recommendation algorithm based on time context[J]. Computer technology and development, 2017, 27(7): 79–82
[38] 沈记全, 王磊, 侯占伟, 等. 基于情景上下文与信任关系的旅游景点推荐算法[J]. 计算机应用研究, 2018, 35(12): 3640–3643
SHEN Jiquan, WANG Lei, HOU Zhanwei, et al. Attractions recommendation algorithm based on situational context and trust relationship[J]. Application research of computers, 2018, 35(12): 3640–3643
[39] 李林峰, 刘真, 魏港明, 等. 基于共享知识模型的跨领域推荐算法[J]. 电子学报, 2018, 46(8): 1947–1953
LI Linfeng, LIU Zhen, WEI Gangming, et al. Cross-domain recommendation algorithm based on sharing knowledge pattern[J]. Acta electronica sinica, 2018, 46(8): 1947–1953
[40] 邢长征, 杨晓婷. 基于SVD++与标签的跨域推荐模型[J]. 计算机工程, 2018, 44(4): 225–230
XING Changzheng, YANG Xiaoting. Cross-domain recommendation model based on SVD++ and tag[J]. Computer engineering, 2018, 44(4): 225–230
[41] 李林峰, 刘真, 魏港明, 等. 基于共享知识模型的跨领域推荐算法[J]. 电子学报, 2018, 46(8): 1947–1953
LI Linfeng, LIU Zhen, WEI Gangming, et al. Cross-domain recommendation algorithm based on sharing knowledge pattern[J]. Acta electronica sinica, 2018, 46(8): 1947–1953
[42] BATTAGLIA P, PASCANU R, LAI M, et al. Interaction networks for learning about objects, relations and physics[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook, USA, 2016: 4502?4510.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems