[1]WANG Huaxian,HUA Rong,LIU Huaping,et al.Self-organizing feature map method for multi-target active perception of unmanned aerial vehicle systems[J].CAAI Transactions on Intelligent Systems,2020,15(3):609-614.[doi:10.11992/tis.201908022]
Copy

Self-organizing feature map method for multi-target active perception of unmanned aerial vehicle systems

References:
[1] ATANASOV N, LE NY J, DANIILIDIS K, et al. Decentralized active information acquisition: Theory and application to multi-robot SLAM[C]//2015 IEEE International Conference on Robotics and Automation (ICRA). Seattle, USA: 2015: 4775-4782.
[2] GIFFORD C M, WEBB R, BLEY J, et al. A novel low-cost, limited-resource approach to autonomous multi-robot exploration and mapping[J]. Robotics and autonomous systems, 2010, 58(2): 186-202.
[3] BEST G, FAIGL J, FITCH R. Online planning for multi-robot active perception with self-organising maps[J]. Autonomous robots, 2018, 42(4): 715-738.
[4] BEST G, CLIFF O M, PATTEN T, et al. Dec-MCTS: Decentralized planning for multi-robot active perception[J]. The international journal of robotics research, 2019, 38(2/3): 316-337.
[5] FITCH R, ISLER V, TOKEKAR P, et al. Guest editorial: special issue on active perception[J]. Autonomous robots, 2018, 42(2): 175-176.
[6] CHEN Shengyong, LI Youfu, KWOK N M. Active vision in robotic systems: A survey of recent developments[J]. The international journal of robotics research, 2011, 30(11): 1343-1377.
[7] BAJCSY R. Active perception[J]. Proceedings of the IEEE, 1988, 76(8): 966-1005.
[8] BAJCSY R, ALOIMONOS Y, TSOTSOS J K. Revisiting active perception[J]. Autonomous robots, 2018, 42(2): 177-196.
[9] CHARROW B. Information-theoretic active perception for multi-robot teams[D]. Philadelphia, USA: University of Pennsylvania, 2015.
[10] GIBSON J J. The ecological approach to visual perception[M]. New York, USA: Psychology Press, 2013.
[11] PATTEN T, ZILLICH M, FITCH R, et al. Viewpoint evaluation for online 3-D active object classification[J]. IEEE robotics and automation letters, 2016, 1(1): 73-81.
[12] YAN Zhi, JOUANDEAU N, CHERIF A A. A survey and analysis of multi-robot coordination[J]. International journal of advanced robotic systems, 2013, 10(12): 399.
[13] SCHLOTFELDT B, THAKUR D, ATANASOV N, et al. Anytime planning for decentralized multirobot active information gathering[J]. IEEE robotics and automation letters, 2018, 3(2): 1025-1032.
[14] FAIGL J, HOLLINGER G A. Unifying multi-goal path planning for autonomous data collection[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago, USA: 2014.
[15] BEKTAS T. The multiple traveling salesman problem: an overview of formulations and solution procedures[J]. Omega, 2006, 34(3): 209-219.
[16] MOHAJER A, BAVAGHAR M, FARROKHI H. Mobility-aware load balancing for reliable self-organization networks: multi-agent deep reinforcement learning[J]. Reliability engineering and system safety, 2020, 202: 107056.
[17] 欧伟奇, 尹辉, 许宏丽, 等. 一种基于Multi-Egocentric视频运动轨迹重建的多目标跟踪算法[J]. 智能系统学报, 2019, 14(2): 246-253
OU Weiqi, YIN Hui, XU Hongli, et al. A multi-object tracking algorithm based on trajectory reconstruction on Multi-Egocentric video[J]. CAAI transactions on intelligent systems, 2019, 14(2): 246-253
[18] 李景灿, 丁世飞. 基于人工鱼群算法的孪生支持向量机[J]. 智能系统学报, 2019, 14(6): 1121-1126
LI Jingcan, DING Shifei. Twin support vector machine based on artificial fish swarm algorithm[J]. CAAI transactions on intelligent systems, 2019, 14(6): 1121-1126
[19] 张飞, 白伟, 乔耀华, 等. 基于改进D*算法的无人机室内路径规划[J]. 智能系统学报, 2019, 14(4): 662-669
ZHANG Fei, BAI Wei, QIAO Yaohua, et al. UAV indoor path planning based on improved D* algorithm[J]. CAAI transactions on intelligent systems, 2019, 14(4): 662-669
[20] 刘建华, 刘华平, 杨建国, 等. 测距式传感器同时定位与地图创建综述[J]. 智能系统学报, 2015, 10(5): 655-662
LIU Jianhua, LIU Huaping, YANG Jianguo, et al. A survey of range-only SLAM for mobile robots[J]. CAAI transactions on intelligent systems, 2015, 10(5): 655-662
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems