[1]WANG Zhaoxin,XU Xinying,LIU Huaping,et al.Cascade broad learning for multi-modal material recognition[J].CAAI Transactions on Intelligent Systems,2020,15(4):787-794.[doi:10.11992/tis.201908021]
Copy

Cascade broad learning for multi-modal material recognition

References:
[1] BELL S, UPCHERCH P, SNAVELY N, et al. Material recognition in the wild with the materials in context database[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Massachusetts, Boston, 2015: 3479-3487.
[2] 齐静, 徐坤, 丁希仑. 机器人视觉手势交互技术研究进展[J]. 机器人, 2017, 39(4): 565-584
QI Jing, XU Kun, DING Xilun. Vision-based hand gesture recognition for human-robot interaction: a review[J]. Robot, 2017, 39(4): 565-584
[3] 吴钟强, 张耀文, 商琳. 基于语义特征的多视图情感分类方法[J]. 智能系统学报, 2017, 12(5): 167-173
WU Zhongqiang, ZHANG Yaowen, SHANG Lin. Multi-view sentiment classification of microblogs based on semantic features[J]. CAAI transactions on intelligent systems, 2017, 12(5): 167-173
[4] 温有福, 贾彩燕, 陈智能. 一种多模态融合的网络视频相关性度量方法[J]. 智能系统学报, 2016, 11(3): 359-365
WEN Youfu, JIA Caiyan, CHEN Zhineng. A multi-modal fusion approach for measuring web video relatedness[J]. CAAI transactions on intelligent systems, 2016, 11(3): 359-365
[5] 马蕊, 刘华平, 孙富春, 等. 基于触觉序列的物体分类[J]. 智能系统学报, 2015, 10(3): 362-368
MA Rui, LIU Huaping, SUN Fuchun, et al. Object classification based on the tactile sequence[J]. CAAI transactions on intelligent systems, 2015, 10(3): 362-368
[6] LIU H, WU Y, SUN F, et al. Weakly paired multimodal fusion for object recognition[J]. IEEE transactions on automation science and engineering, 2017, 15(2): 784-795.
[7] EGUíLUZ A G, RA?ó I, Coleman S A, et al. A multi-modal approach to continuous material identification through tactile sensing[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems. Daejeon, Korea, 2016: 4912-4917.
[8] ZHENG H, FANG L, JI M, et al. Deep learning for surface material classification using haptic and visual information[J]. IEEE transactions on multimedia, 2016, 18(12): 2407-2416.
[9] ERICKSON Z, CHERNOVA S, KEMP C. Semi-supervised haptic material recognition for robots using generative adversarial networks[J]. arXiv: 1707.02796, 2017.
[10] CHEN C L P, LIU Z. Broad learning system: an effective and efficient incremental learning system without the need for deep architecture[J]. IEEE transactions on neural networks and learning systems, 2017, 29(1): 10-24.
[11] LIU Z, ZHOU J, CHEN C L P. Broad learning system: Feature extraction based on K-means clustering algorithm[C]//2017 4th International Conference on Information, Cybernetics and Computational Social Systems. London, UK, 2017: 683-687.
[12] LIU Z, CHEN C L P. Broad learning system: Structural extensions on single-layer and multi-layer neural networks[C]//2017 International Conference on Security, Pattern Analysis, and Cybernetics. Shenzhen, China, 2017: 136-141.
[13] JIN J, LIU Z, CHEN C L P. Discriminative graph regularized broad learning system for image recognition[J]. Science China information sciences, 2018, 61(11): 112209.
[14] CHEN C L P, LIU Z, FENG S. Universal approximation capability of broad learning system and its structural variations[J]. IEEE transactions on neural networks and learning systems, 2018, 30(4): 1191-1204.
[15] LI D, SHUJUAN J, CHUNJIN Z. Improved broad learning system: partial weights modification based on BP algorithm[J]. Materials science and engineering, 2018, 439(3): 032083.
[16] ZHANG T L, CHEN R, YANG X, et al. Rich feature combination for cost-based broad learning system[J]. IEEE access, 2018, 7(1): 160-172.
[17] ZHAO H, ZHENG J, DENG W, et al. Semi-supervised broad learning system based on manifold regularization and broad network[J]. IEEE transactions on circuits and systems I: regular papers, 2020, 67(3): 983-994.
[18] KONG Y, WANG X, CHENG Y, et al. Hyperspectral imagery classification based on semi-supervised broad learning system[J]. Remote sensing, 2018, 10(5): 685.
[19] FENG S, CHEN C L P. Fuzzy broad learning system: A novel neuro-fuzzy model for regression and classification[J]. IEEE transactions on cybernetics, 2018, 50(2): 414-424.
[20] JIN J, CHEN C L P. Regularized robust broad learning system for uncertain data modeling[J]. Neurocomputing, 2018, 322(1): 58-69.
[21] LIU Z, SHEN Y, LAKSHMINARASIMHAN V B, et al. Efficient low-rank multimodal fusion with modality-specific factors[J]. arXiv: 1806.00064, 2018.
[22] 魏洁. 深度极限学习机的研究与应用[D]. 太原: 太原理工大学, 2016.
WEI Jie. Research and application of deep extreme learning machine[D]. Taiyuan: Taiyuan University of Technology, 2016.
[23] ERICKSON Z, LUSKEY N, CHERNOVA S, et al. Classification of household materials via spectroscopy[J]. IEEE robotics and automation letters, 2019, 4(2): 700-707.
[24] ZHENG W, LIU H, WANG B, et al. Cross-modal surface material retrieval using discriminant adversarial learning[J]. IEEE transactions on industrial informatics, 2019(1): 1-1.
[25] 贾晨, 刘华平, 续欣莹, 等. 基于宽度学习方法的多模态信息融合[J]. 智能系统学报, 2019, 14(1): 154-161
JIA Chen, LIU Huaping, XU Xinying, et al. Multi-modal information fusion based on broad learning method[J]. CAAI transactions on intelligent systems, 2019, 14(1): 154-161
[26] 方静. 基于LRF-ELM算法的研究及其在物体材质分类中的应用[D]. 太原: 太原理工大学, 2018.
FANG Jing. The research based on LRF-ELM algorithm and its application in the object material classification[D]. Taiyuan: Taiyuan University of Technology, 2018.
Similar References:

Memo

-

Last Update: 2020-07-25

Copyright © CAAI Transactions on Intelligent Systems