[1]LIU Dongjingdian,MENG Xuechun,ZHANG Zixin,et al.A behavioral recognition algorithm based on 2D spatiotemporal information extraction[J].CAAI Transactions on Intelligent Systems,2020,15(5):900-909.[doi:10.11992/tis.201906054]
Copy

A behavioral recognition algorithm based on 2D spatiotemporal information extraction

References:
[1] WANG H, SCHMID C. Action recognition with improved trajectories[C]//2013 IEEE International Conference on Computer Vision. Sydney, AUS, 2013: 3551-3558.
[2] KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, USA, 2012: 1097-1105.
[3] RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International journal of computer vision, 2014, 115(3): 211-252.
[4] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015: 1-9.
[5] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016: 770-778.
[6] HUANG G, LIN Z, LAURENS V D M, et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017: 2261-2269.
[7] SOOMRO K, ZAMIR A R, SHAH M. UCF101: A dataset of 101 human actions classes from videos in the wild[J]. arXiv: 1212.0402, 2012.
[8] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[9] CHEN P H, LIN C J, Sch?lkopf B. A tutorial on v-support vector machines[J]. Applied stochastic models in business and industry, 2005, 21(2): 111-136.
[10] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005, 1: 886-893.
[11] CHAUDHRY R, RAVICHANDRAN A, HAGER G, et al. Histograms of oriented optical flow and binet-cauchy kernels on nonlinear dynamical systems for the recognition of human actions[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA, 2009: 1932-1939.
[12] DALAL N, TRIGGS B, SCHMID C. Human detection using oriented histograms of flow and appearance[C]//European Conference on Computer Vision. Graz, Austria, 2006: 428-441.
[13] WANG H, Kl?ser A, SCHMID C, et al. Action recognition by dense trajectories[C]//Proceedings of the IEEE International Conference on Computer Vision. Colorado Springs, USA, 2011: 3169-3176.
[14] CARREIRA J, ZISSERMAN A. Quo vadis, action recognition? a new model and the kinetics dataset[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Venice, Italy, 2017: 6299-6308.
[15] FEICHTENHOFER C, PINZ A, ZISSERMAN A. Convolutional two-stream network fusion for video action recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016: 1933-1941.
[16] NG Y H, HAUSKENCHT M, VIJAYANARASIMHAN S, et al. Beyond short snippets: Deep networks for video classification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015: 4694-4702.
[17] WANG L, XIONG Y, WANG Z, et al. Temporal segment networks: Towards good practices for deep action recognition[C]//European Conference on Computer Vision. Amsterdam, The Netherlands, 2016: 20-36.
[18] LAN Z, ZHU Y, HAUPTMANN A G, et al. Deep local video feature for action recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Venice, Italy, 2017: 1-7.
[19] 张培浩. 基于姿态估计的行为识别方法研究[D]. 南京: 南京航空航天大学, 2015.
ZHANG Peihao. Research on action recognition based on pose estimation[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015.
[20] 马淼. 视频中人体姿态估计、跟踪与行为识别研究[D]. 山东: 山东大学, 2017.
MA Miao. Study on human pose estimation, tracking and human action recognition in videos[D]. Shandong: Shandong University, 2017.
[21] TRAN D, BOURDEY L, FERGUS R, et al. Learning spatiotemporal features with 3D convolutional Networks[C]//Proceedings of the IEEE International Conference on Computer Vision. Santiago, Chile, 2015: 4489-4497.
[22] HARA K, KATAOKA H, SATOH Y. Learning spatio-temporal features with 3D residual networks for action recognition[C]//Proceedings of the IEEE International Conference on Computer Vision Workshops. Venice, Italy, 2017: 3154-3160.
[23] QIU Z, YAO T, MEI T. Learning spatio-temporal representation with pseudo-3d residual networks[C]//Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy, 2017: 5533-5541.
[24] DIBA A, FAYYAZ M, SHARMA V, et al. Temporal 3d convnets: new architecture and transfer learning for video classification[J]. arXiv preprint arXiv: 1711.08200, 2017.
[25] SUN L, JIA K, YEUNG D Y, et al. Human action recognition using factorized spatio-temporal convolutional networks[C]//Proceedings of the IEEE International Conference on Computer Vision. Santiago, Chile, 2015: 4597-4605.
[26] TRAN D, WANG H, TORRESANI L, et al. A closer look at spatiotemporal convolutions for action recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018: 6450-6459.
[27] SIMONYAN K, ZISSERMAN A. Two-stream convolutional networks for action recognition in videos[C]//Advances in Neural Information Processing Systems. Montreal, Canada, 2014: 568-576.
Similar References:

Memo

-

Last Update: 2021-01-15

Copyright © CAAI Transactions on Intelligent Systems