[1]ZHAO Tianna,MIAO Duoqian,MI Jusheng,et al.Multi-adjoint three-way decisions on heterogeneous data[J].CAAI Transactions on Intelligent Systems,2019,14(6):1092-1099.[doi:10.11992/tis.201905048]
Copy

Multi-adjoint three-way decisions on heterogeneous data

References:
[1] YANG Rong, WANG Zhenyuan, HENG P A, et al. Classification of heterogeneous fuzzy data by choquet integral with fuzzy-valued integrand[J]. IEEE transactions on fuzzy systems, 2007, 15(5):931-942.
[2] HU Qinghua, ZHANG Lingjun, ZHOU Yucan, et al. Large-scale multimodality attribute reduction with multi-kernel fuzzy rough sets[J]. IEEE transactions on fuzzy systems, 2018, 26(1):226-238.
[3] MI Jusheng, LEUNG Y, ZHAO Huiyin, et al. Generalized fuzzy rough sets determined by a triangular norm[J]. Information sciences, 2008, 178:3203-3213.
[4] FENG Tao, MI Jusheng, ZHANG Shaopu. Belief functions on general intuitionistic fuzzy information systems[J]. Information sciences, 2014, 271:143-158.
[5] MEDINA J, OJEDA-ACIEGO M, VALVERDE A, et al. Towards biresiduated multi-adjoint logic programming[M]//CONEJO R, URRETAVIZCAYA M, PéREZ-DE-LA-CRUZ J L. Current Topics in Artificial Intelligence. Berlin, Heidelberg:Springer, 2004:608-617.
[6] TAN Ming. Cost-sensitive learning of classification knowledge and its applications in robotics[J]. Machine learning, 1993, 13(1):7-33.
[7] SUSMAGA R. Computation of minimal cost reducts[M]//RA? Z W, SKOWRON A. Foundations of Intelligent Systems. Berlin, Heidelberg:Springer, 1999:448-456.
[8] FAN Min, HE Huaping, QIAN Yuhua, et al. Test-cost-sensitive attribute reduction[J]. Information sciences, 2011, 181(22):4928-4942.
[9] TURNEY P D. Cost-sensitive classification:empirical evaluation of a hybrid genetic decision tree induction algorithm[J]. Journal of artificial intelligence research, 1995, 2(1):369-409
[10] JU Hengrong, LI Huaxiong, YANG Xibei, et al. Cost-sensitive rough set:a multi-granulation approach[J]. Knowledge-based systems, 2017, 300:137-153.
[11] YAO Yiyu. Three-way decisions with probabilistic rough sets[J]. Information sciences, 2017, 180(3):341-353.
[12] YAO Y Y, WONG S K M. A decision theoretic framework for approximating concepts[J]. International journal of man-machine studies, 1992, 37(6):793-809.
[13] LIANG Decui, LIU Dun. Deriving three-way decisions from intuitionistic fuzzy decision-theoretic rough sets[J]. Information sciences, 2015, 300:28-48.
[14] LIANG Decui, XU Zeshui, LIU Dun. Three-way decisions based on decision-theoretic rough sets with dual hesitant fuzzy information[J]. Information sciences, 2017, 396:127-143.
[15] QIAO Junsheng, HU Baoqing. On transformations from semi-three-way decision spaces to three-way decision spaces based on triangular norms and triangular conorms[J]. Information sciences, 2018, 432:22-51.
[16] 徐健锋, 苗夺谦, 张远健. 基于混淆矩阵的多目标优化三支决策模型[J]. 模式识别与人工智能, 2017, 30(9):859-864 XU Jianfeng, MIAO Duoqian, ZHANG Yuanjian. Three-way decisions model for multi-object optimization based on confusion matrix[J]. Pattern recognition and artificial intelligence, 2017, 30(9):859-864
[17] 徐健锋, 苗夺谦, 张远健. 延迟代价双量化三支决策[J]. 小型微型计算机系统, 2019, 40(2):260-266 XU Jianfeng, MIAO Duoqian, ZHANG Yuanjian. Double-quantification of cost function with deferment for three-way decisions[J]. Journal of Chinese computer systems, 2019, 40(2):260-266
[18] AL-HMOUZ R, PEDRYCZ W, DAQROUQ K, et al. Development of multimodal biometric systems with three-way and fuzzy set-based decision mechanisms[J]. International journal of fuzzy systems, 2018, 20(1):128-140.
[19] 赵天娜, 米据生, 解滨, 等. 基于多伴随直觉模糊粗糙集的三支决策[J]. 南京大学学报(自然科学), 2017, 53(6):1081-1090 ZHAO Tianna, MI Jusheng, XIE Bin, et al. Three-way decisions with multi-adjoint intuitionistic fuzzy rough sets[J]. Journal of Nanjing University (Natural Science), 2017, 53(6):1081-1090
[20] CORNELIS C, MEDINA J, VERBIEST N. Multi-adjoint fuzzy rough sets:definition, properties and attribute selection[J]. International journal of approximate reasoning, 2014, 55(1):412-426.
Similar References:

Memo

-

Last Update: 2019-12-25

Copyright © CAAI Transactions on Intelligent Systems