[1]LIANG Hui,CAO Feng,QIAN Yuhua,et al.Number sequence logic learning in image context[J].CAAI Transactions on Intelligent Systems,2019,14(6):1189-1198.[doi:10.11992/tis.201905044]
Copy

Number sequence logic learning in image context

References:
[1] BOGOSHI J. The oldest mathematical artefact[J]. The mathematical gazette, 1987, 71(458):294-294.
[2] SCHMID U, KITZELMANN E. Inductive rule learning on the knowledge level[J]. Cognitive systems research, 2011, 12(3/4):237-248.
[3] FLENER P, SCHMID U. An introduction to inductive programming[J]. Artificial intelligence review, 2008, 29(1):45-62.
[4] COLTON S, BUNDY A, WALSH T. Automatic Invention of Integer Sequences[M]//The fertility of the soil/. Cambridge University Press AAAI/IAAI, 2000:558-563.
[5] QIAN Y, LI F J, LIANG J Y, et al. Space structure and clustering of categorical data[J]. IEEE transactions on neural networks and learning systems, 2016, 27(10):2047-2059.
[6] QIAN Y, XU H, LIANG J Y, et al. Fusing monotonic decision trees[J]. IEEE transactions on knowledge and data engineering, 2015, 27(10):2717-2728.
[7] QIAN Y, LI Y, LIANG J, et al. Fuzzy granular structure distance[J]. IEEE transactions on fuzzy systems, 2015, 23(6):2245-2259.
[8] QIAN Y, LIANG J, PEDRYCZ W, et al. Positive approximation:An accelerator for attribute reduction in rough set theory[J]. Artificial intelligence, 2010, 174(9/10):597-618.
[9] RAVEN J, et al. Raven progressive matrices[M]. Handbook of Nonverbal Assessment, 2003, 223-237.
[10] MUGGLETON S, CHEN J. Guest editorial:special issue on inductive logic programming (ILP 2011)[J]. Machine learning, 2012, 89(3):213-214.
[11] HOLZMAN T G, PELLIGRINO J W, GLASER R. Cognitive dimensions of numerical rule induction[J]. Journal of educational psychology, 1982, 74(3):360-373.
[12] STERNBERG R.J. Handbook of Intelligence[M]. Cambridge University Press, 2000.
[13] SIMON H A, KOTOVSKY K. Human acquisition of concepts for sequential patterns[J]. Psychological review, 1963, 70(6):534-546.
[14] SANGHI P, DOWE D.L, A computer program capable of passing I.Q. tests[C]//4th Int. Conf. on Cognitive Science(ICCS’03), Sydney, 2003:570-575.
[15] SIEBERS M, SCHMID U. Semi-analytic natural number series induction[J]. Advances in artificial intelligence, 2012, 7526:249-252.
[16] STRANNEGARD C, AMIRGHASEMI M, ULFSBACKER S. An anthropomorphic method for number sequence problems[J]. Cognitive systems research, 2013, 22-23:27-34.
[17] HOFMANN J, KITZELMANN E, SCHMID U. Applying inductive program synthesis to induction of number series a case study with IGOR2[J]. Joint german/austrian conference on artificial intelligence(Künstliche Intelligenz).Springer, Cham, 2014:25-36.
[18] RAGNI M, KLEIN A. Predicting numbers:An AI approach to solving number series[C]//German Conference on Advances in Artificial Intelligence. Springer, Berlin, Heidelberg, 2011:255-259.
[19] RAGNI M, KLEIN A. Solving number series-architectural properties of successful artificial neural networks[C]//NCTA 2011-Proceedings of the International Conference on Neural Computation Theory and Applications, 2011:224-229.
[20] KINGMA D P, BA J. Adam:A method for stochastic optimization.[C]//Proceedings of the 3rd International Comference on Learning Representations, San Diego, arXiv prerint arXiv:1412.6980, 2014.
[21] LECUN Y, BENGIO Y, Hinton G. Deep learning[M]. Nature, 2015, 521(7553):436.
[22] HOCHREITER S, SCHMIDHUBER, JüRGEN. Long short-term memory[J]. Neural computation, 1997, 9(8):1735-1780.
[23] CHUMERIN N. Convolutional neural network[J]. Neurocomputing, 2015, 148:136-142.
[24] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. In:advances in neural information processing systems, 2012:1097-1105.
[25] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout:a simple way to prevent neural networks from overfitting[J]. Journal of machine learning research, 2014, 15(1):1929-1958.
[26] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[J]. In proceedings of the IEEE conference on computer vision and pattern recognition, 2016:770-778.
[27] SMITH R. An overview of the tesseract OCR engine[C]//icdar. IEEE Computer Society, 2007, 2:629-633.
Similar References:

Memo

-

Last Update: 2019-12-25

Copyright © CAAI Transactions on Intelligent Systems