[1]JIA Zhonghao,BIN Chenzhong,GU Tianlong,et al.Personalized attraction recommendation based on the knowledge graph and users’ long-term and short-term preferences[J].CAAI Transactions on Intelligent Systems,2020,15(5):990-997.[doi:10.11992/tis.201904064]
Copy

Personalized attraction recommendation based on the knowledge graph and users’ long-term and short-term preferences

References:
[1] CATHERINE R, COHEN W. Personalized recommendations using knowledge graphs: a probabilistic logic programming approach[C]//Proceedings of the 10th ACM Conference on Recommender Systems. Boston, Massachusetts, USA, 2016: 325-332.
[2] DI NOIA T, OSTUNI V C, TOMEO P, et al. SPrank: semantic path-based ranking for top-N recommendations using linked open data[J]. ACM transactions on intelligent systems and technology, 2016, 8(1): 9.
[3] 刘峤, 李杨, 段宏, 等. 知识图谱构建技术综述[J]. 计算机研究与发展, 2016, 53(3): 582-600
LIU Qiao, LI Yang, DUAN Hong, et al. Knowledge graph construction techniques[J]. Journal of computer research and development, 2016, 53(3): 582-600
[4] PALUMBO E, RIZZO G, TRONCY R, et al. Knowledge graph embeddings with node2vec for item recommendation[C]//Proceedings of European Semantic Web Conference. Crete, Greece, 2018: 117-120.
[5] YU Xiao, REN Xiang, SUN Yizhou, et al. Personalized entity recommendation: a heterogeneous information network approach[C]//Proceedings of the 7th ACM International Conference on Web Search and Data Mining. New York, USA, 2014: 283-292.
[6] HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks[J]. computer science, 2015.
[7] TAN Y K, XU Xinxing, LIU Yong. Improved recurrent neural networks for session-based recommendations[EB/OL]. [2018-10-15] https://arxiv.org/abs/1606.08117, 2016.
[8] QUADRANA M, KARATZOGLOU A, HIDASI B, et al. Personalizing session-based recommendations with hierarchical recurrent neural networks[C]//Proceedings of the Eleventh ACM Conference on Recommender Systems. Como, Italy, 2017: 130-137.
[9] GROVER A, LESKOVEC J. node2vec: scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, California, USA, 2016: 855-864.
[10] MIKOLOV T, SUTSKEVER I, CHEN Kai, et al. Distributed representations of words and phrases and their compositionality[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada, USA, 2013: 3111-3119.
[11] CHEN Haochen, PEROZZI B, AL-RFOU R, et al. A tutorial on network embeddings[EB/OL]. [2018-11-15] https://arxiv.org/abs/arXiv:1808.02590, 2018.
[12] TANG Jian, QU Meng, WANG Mingzhe, et al. LINE: large-scale information network embedding[C]//Proceedings of the 24th International Conference on World Wide Web. Florence, Italy, 2015: 1067-1077.
[13] YANG Cheng, LIU Zhiyuan, ZHAO Deli, et al. Network representation learning with rich text information[C]//Proceedings of the 24th International Conference on Artificial Intelligence. Buenos Aires, Argentina, 2015: 2111-2117.
[14] CAO Shaosheng, LU Wei, XU Qiongkai. GraRep: learning graph representations with global structural information[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. Melbourne, Australia, 2015: 891-900.
[15] RIBEIRO L F R, SAVERESE P H P, FIGUEIREDO D R. 2017. struc2vec: learning node representations from structural identity[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Halifax, NS, Canada, 2017: 385-394.
[16] WANG Hongwei, WANG Jia, WANG Jialin, et al. GraphGAN: graph representation learning with generative adversarial nets[C]//Proceedings of AAAI Conference on Artificial Intelligence. New Orleans, Lousiana, USA, 2018: 2508-2515.
[17] WANG Daixin, CUI Peng, ZHU Wenwu. Structural deep network embedding[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, California, USA, 2016: 1225-1234.
[18] PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA, 2014: 701-710.
[19] ORAMAS S, OSTUNI V C, DI NOIA T, et al. Sound and music recommendation with knowledge graphs[J]. ACM transactions on intelligent systems and technology, 2017, 8(2): 21.
[20] PALUMBO E, RIZZO G, TRONCY R. entity2rec: learning user-item relatedness from knowledge graphs for top-N item recommendation[C]//Proceedings of the Eleventh ACM Conference on Recommender Systems. Como, Italy, 2017: 32-36.
[21] ZHANG Fuzheng, YUAN N J, LIAN Defu, et al. Collaborative knowledge base embedding for recommender systems[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, California, USA, 2016: 353-362.
[22] LIN Yankai, LIU Zhiyuan, SUN Maosong, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence. Austin Texas, USA, 2015.
[23] VINCENT P, LAROCHELLE H, LAJOIE I, et al. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion[J]. Journal of machine learning research, 2010, 11: 3371-3408.
[24] MASCI J, MEIER U, CIRE?AN D, et al. Stacked convolutional auto-encoders for hierarchical feature extraction[C]//Proceedings of the 21st International Conference on Artificial Neural Networks. Espoo, Finland, 2011: 52-59.
[25] LI Jing, REN Pengjie, CHEN Zhumin, et al. Neural attentive session-based recommendation[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. Singapore, Singapore, 2017: 1419-1428.
[26] LIU Qiao, ZENG Yifu, MOKHOSI R, et al. STAMP: short-term attention/memory priority model for session-based recommendation[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. London, United Kingdom, 2018: 1831-1839.
[27] WU Shu, TANG Yuyuan, ZHU Yanqiao, et al. Session-based recommendation with graph neural networks[J]. Proceedings of the thirty-third AAAI conference on artificial intelligence, 2018, 33(1): 346-353.
[28] 徐增林, 盛泳潘, 贺丽荣, 等. 知识图谱技术综述[J]. 电子科技大学学报, 2016, 45(4): 589-606
XU Zenglin, SHENG Yongpan, HE Lirong, et al. Review on knowledge graph techniques[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(4): 589-606
[29] SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the 10th International Conference on World Wide Web. Hong Kong, China, 2001: 285-295.
[30] RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[C]//Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence. Montreal, Quebec, Canada, 2009: 452-461.
Similar References:

Memo

-

Last Update: 2021-01-15

Copyright © CAAI Transactions on Intelligent Systems