[1]HUANG Huajuan,WEI Xiuxi,ZHOU Yongquan.Granular support vector machine based on fuzzy kernel clustering granulation[J].CAAI Transactions on Intelligent Systems,2019,14(6):1271-1277.[doi:10.11992/tis.201904048]
Copy

Granular support vector machine based on fuzzy kernel clustering granulation

References:
[1] VAPNIK V N. The nature of statistical learning theory[M]. New York:Springer-Verlag, 1995.
[2] 丁世飞, 张健, 张谢锴, 等. 多分类孪生支持向量机研究进展[J]. 软件学报, 2018, 29(1):89-108 DING Shifei, ZHANG Jian, ZHANG Xiekai, et al. Survey on multi class twin support vector machines[J]. Journal of software, 2018, 29(1):89-108
[3] AN Yuexuan, DING Shifei, SHI Songhui, et al. Discrete space reinforcement learning algorithm based on support vector machine classification[J]. Pattern recognition letters, 2018, 111:30-35.
[4] 谢娟英, 谢维信. 基于特征子集区分度与支持向量机的特征选择算法[J]. 计算机学报, 2014, 37(8):1704-1718 XIE Juanying, XIE Weixin. Several feature selection algorithms based on the discernibility of a feature subset and support vector machines[J]. Chinese journal of computers, 2014, 37(8):1704-1718
[5] YAO Y Y. Granular computing:basic issues and possible solution[C]//Proceedings of the 5th Joint Conference on Information Sciences. Atlantic City, USA, 2000:186-189.
[6] DING Shifei, XU Li, ZHU Hong, et al. Research and progress of cluster algorithms based on granular computing[J]. International journal of digital content technology and its applications, 2010, 4(5):96-104.
[7] TANG Yuchun, JIN Bo, SUN Yi, et al. Granular support vector machines for medical binary classification problems[C]//Proceedings of 2004 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology. La Jolla, CA, USA, 2004:73-78.
[8] TANG Yuchun, JIN Bo, ZHANG Yanqing. Granular support vector machines with association rules mining for protein homology prediction[J]. Artificial intelligence in medicine, 2005, 35(1/2):121-134.
[9] 冯昌, 廖士中. 随机傅里叶特征空间中高斯核支持向量机模型选择[J]. 计算机研究与发展, 2016, 53(9):1971-1978 FENG Chang, LIAO Shizhong. Model selection for Gaussian kernel support vector machines in random Fourier feature space[J]. Journal of computer research and development, 2016, 53(9):1971-1978
[10] 段丹青, 陈松乔, 杨卫军, 等. 使用粗糙集和支持向量机检测入侵[J]. 小型微型计算机系统, 2008, 29(4):627-630 DUAN Danqing, CHEN Songqiao, YANG Weiping, et al. Detect intrusion using rough set and support vector machine[J]. Journal of Chinese computer systems, 2008, 29(4):627-630
[11] 李涛, 刘学臣, 张帅, 等. 基于混合编程模型的支持向量机训练并行化[J]. 计算机研究与发展, 2015, 52(5):1098-1108 LI Tao, LIU Xuechen, ZHANG Shuai, et al. Parallel support vector machine training with hybrid programming model[J]. Journal of computer research and development, 2015, 52(5):1098-1108
[12] 丁世飞, 黄华娟. 最小二乘孪生参数化不敏感支持向量回归机[J]. 软件学报, 2017, 28(12):3146-3155 DING Shifei, HUANG Huajuan. Least squares twin parametric insensitive support vector regression[J]. Journal of software, 2017, 28(12):3146-3155
[13] 张鑫. 粒度支持向量机学习方法研究[D]. 太原:山西大学, 2009. ZHANG Xin. Research on granular support vector machine learning method[D]. Taiyuan:Shangxi University, 2009.
[14] DING Shifei, AN Yuexuan, ZHANG Xiekai, et al. Wavelet twin support vector machines based on glowworm swarm optimization[J]. Neurocomputing, 2017, 225:157-163.
[15] KUMAR M A, GOPAL M. Application of smoothing technique on twin support vector machines[J]. Pattern recognition letters, 2008, 29(13):1842-1848.
[16] 黄华娟. 孪生支持向量机关键问题的研究[D]. 徐州:中国矿业大学, 2014. HUANG Huajuan. Research on the key problems of twin support vector machines[D]. Xuzhou:China University of Mining and Technology, 2014.
[17] 郭虎升, 王文剑, 张鑫. 基于粒度核的支持向量机学习算法[C]//第三届中国粒计算联合会议. 河北,石家庄,2009.95-97:155.
Similar References:

Memo

-

Last Update: 2019-12-25

Copyright © CAAI Transactions on Intelligent Systems