[1]ZHAO Shuaiqun,GUO Husheng,WANG Wenjian.Granular support vector machine with bidirectional control of division-fusion[J].CAAI Transactions on Intelligent Systems,2019,14(6):1243-1254.[doi:10.11992/tis.201904047]
Copy

Granular support vector machine with bidirectional control of division-fusion

References:
[1] VAPNIK V. The nature of statistical learning theory[M]. New York:Springer, 1995.
[2] YUAN Ruixi, LI Zhu, GUAN Xiaohong, et al. An SVM-based machine learning method for accurate internet traffic classification[J]. Information systems frontiers, 2010, 12(2):149-156.
[3] CHEN G Y, XIE W F. Pattern recognition with SVM and dual-tree complex wavelets[J]. Image and vision computing, 2007, 25(6):960-966.
[4] REYNA R A, ESTEVE D, HOUZET D, et al. Implementation of the SVM neural network generalization function for image processing[C]//Proceedings of the 5th IEEE International Workshop on Computer Architectures for Machine Perception. Padova, Italy, 2000:147-151.
[5] LIU Yang, WEN Kaiwen, GAO Quanxue, et al. SVM based multi-label learning with missing labels for image annotation[J]. Pattern recognition, 2018, 78:307-317.
[6] XIONG Xiaoxia, CHEN Long, LIANG Jun. A new framework of vehicle collision prediction by combining SVM and HMM[J]. IEEE transactions on intelligent transportation systems, 2018, 19(3):699-710.
[7] BISHWAS A K, MANI A, PALADE V. An all-pair quantum SVM approach for big data multiclass classification[J]. Quantum information processing, 2018, 17(10):282.
[8] ZHOU Xueliang, JIANG Pingyu, WANG Xianxiang. Recognition of control chart patterns using fuzzy SVM with a hybrid kernel function[J]. Journal of intelligent manufacturing, 2018, 29(1):51-67.
[9] TANG Yuchun, JIN Bo, SUN Yi, et al. Granular support vector machines for medical binary classification problems[C]//Proceedings of 2004 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology. La Jolla, USA, 2004:73-78.
[10] YU H, YANG J, HAN Jiawei. Classifying large data sets using SVMs with hierarchical clusters[C]//Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington, USA, 2003:306-315.
[11] WANG Wenjian, XU Zongben. A heuristic training for support vector regression[J]. Neurocomputing, 2004, 61:259-275.
[12] MAO Xueyu, SARKAR P, CHAKRABARTI D. Overlapping Clustering Models, and One (class) SVM to Bind Them All[J]. arXiv:1806.06945, 2018.
[13] DING Shifei, QI Bingjuan. Research of granular support vector machine[J]. Artificial intelligence review, 2012, 38(1):1-7.
[14] GUO Husheng, WANG Wenjian, MEN Changqian. A novel learning model-Kernel granular support vector machine[C]//Proceedings of 2009 International Conference on Machine Learning and Cybernetics. Hebei, China, 2009:930-935.
[15] 程凤伟, 王文剑, 郭虎升. 动态粒度SVM学习算法[J]. 模式识别与人工智能, 2014, 27(4):372-377 CHENG Fengwei, WANG Wenjian, GUO Husheng. Dynamic granular support vector machine learning algorithm[J]. Pattern recognition and artificial intelligence, 2014, 27(4):372-377
[16] HASSAN R, OTHMAN R M, SHAH Z A. Granular support vector machine to identify unknown structural classes of protein[J]. International journal of data mining and bioinformatics, 2015, 12(4):451-467.
[17] GUO Husheng, WANG Wenjian. Granular support vector machine:a review[J]. Artificial intelligence review, 2019, 51(1):19-32.
[18] MA Zhixian, LI Weitian, WANG Lei, et al. X-ray astronomical point sources recognition using granular binary-tree SVM[C]//Proceedings of the 13th International Conference on Signal Processing. Chengdu, China, 2017:1021-1026.
[19] GUO Husheng, WANG Wenjian. Support vector machine based on hierarchical and dynamical granulation[J]. Neurocomputing, 2016, 211:22-33.
[20] 郭虎升, 王文剑. 动态粒度支持向量回归机[J]. 软件学报, 2013, 24(11):2535-2547 GUO Husheng, WANG Wenjian. Dynamical granular support vector regression machine[J]. Journal of software, 2013, 24(11):2535-2547
[21] YAO Y. Perspectives of granular computing[C]//Proceedings of 2005 IEEE International Conference on Granular Computing. Beijing, China, 2005:85-90.
[22] TANG Yuchun, JIN Bo, ZHANG Yanqing. Granular support vector machines with association rules mining for protein homology prediction[J]. Artificial intelligence in medicine, 2005, 35(1/2):121-134.
[23] LI Boyang, WANG Qiangwei, HU Jinglu. A fast SVM training method for very large datasets[C]//Proceedings of 2009 International Joint Conference on Neural Networks. Atlanta, USA, 2009:1784-1789.
[24] LI Xiaoou, YU Wen. Fast support vector machine classification for large data sets[J]. International journal of computational intelligence systems, 2014, 7(2):197-212.
[25] LI Xiaoou, CERVANTES J, YU Wen. A novel SVM classification method for large data sets[C]//Proceedings of 2010 IEEE International Conference on Granular Computing. San Jose, USA, 2010:297-302.
Similar References:

Memo

-

Last Update: 2019-12-25

Copyright © CAAI Transactions on Intelligent Systems