[1]QIAN Jianbin,CHEN Xiuhong.Self-adaptive multi-phase linear reconstruction representation based classification for face recognition[J].CAAI Transactions on Intelligent Systems,2020,15(5):964-971.[doi:10.11992/tis.201904002]
Copy

Self-adaptive multi-phase linear reconstruction representation based classification for face recognition

References:
[1] ZHANG Lei, YANG Meng, FENG Xiangchu. Sparse representation or collaborative representation: which helps face recognition[C]//Proceedings of the 2011 International Conference on Computer Vision. Barcelona, Spain, 2011: 471-478.
[2] XU Yong, LI Xuelong, YANG Jian, et al. Integrating conventional and inverse representation for face recognition[J]. IEEE transactions on cybernetics, 2014, 44(10): 1738-1746.
[3] WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation[J]. IEEE transactions on pattern analysis and machine intelligence, 2009, 31(2): 210-227.
[4] XU Yong, ZHANG D, YANG Jian, et al. A two-phase test sample sparse representation method for use with face recognition[J]. IEEE transactions on circuits and systems for video technology, 2011, 21(9): 1255-1262.
[5] ZHANG Jian, YANG Jian. Linear reconstruction measure steered nearest neighbor classification framework[J]. Pattern recognition, 2014, 47(4): 1709-1720.
[6] CHENG H, LIU Zicheng, HOU Lei, et al. Sparsity-induced similarity measure and its applications[J]. IEEE transactions on circuits and systems for video technology, 2016, 26(4): 613-626.
[7] LI Jiang, LU Canyi. A new decision rule for sparse representation based classification for face recognition[J]. Neurocomputing, 2013, 116: 265-271.
[8] GAO Shenghua, TSANG I W H, CHIA L T. Laplacian sparse coding, hypergraph laplacian sparse coding, and applications[J]. IEEE transactions on pattern analysis and machine intelligence, 2013, 35(1): 92-104.
[9] QIAO Lishan, CHEN Songcan, TAN Xiaoyang. Sparsity preserving projections with applications to face recognition[J]. Pattern recognition, 2010, 43(1): 331-341.
[10] MA Hongxing, GOU Jianping, WANG Xili, et al. Sparse coefficient-based k-nearest neighbor classification[J]. IEEE access, 2017, 5: 16618-16634.
[11] GOU Jianping, XU Yong, ZHANG D, et al. Two-phase linear reconstruction measure-based classification for face recognition[J]. Information sciences, 2018, 433-434: 17-36.
[12] YAN Shuicheng, XU Dong, ZHANG Benyu, et al. Graph embedding and extensions: a general framework for dimensionality reduction[J]. IEEE transactions on pattern analysis and machine intelligence, 2007, 29(1): 40-51.
[13] FANG Xiaozhao, XU Yong, LI Xuelong, et al. Learning a nonnegative sparse graph for linear regression[J]. IEEE transactions on image processing, 2015, 24(9): 2760-2771.
[14] 叶志飞, 文益民, 吕宝粮. 不平衡分类问题研究综述[J]. 智能系统学报, 2009, 4(2): 148-156
YE Zhifei, WEN Yimin, LV Baoliang. A survey of imbalanced pattern classification problems[J]. CAAI transactions on intelligent systems, 2009, 4(2): 148-156
[15] LIU Fan, TANG Jinhui, SONG Yan, et al. Local structure based multi-phase collaborative representation for face recognition with single sample per person[J]. Information sciences, 2016, 346-347: 198-215.
[16] QIAN J B. data[EB/OL]. Github, 2019 (2019-05-30) [2019-05]. https://github.com/greatQntgz/MPRBC
Similar References:

Memo

-

Last Update: 2021-01-15

Copyright © CAAI Transactions on Intelligent Systems