[1]ZHU Juntao,CHEN Qiang.Improvement of kinect performance in RGB-D visual odometer[J].CAAI Transactions on Intelligent Systems,2020,15(5):943-948.[doi:10.11992/tis.201903007]
Copy

Improvement of kinect performance in RGB-D visual odometer

References:
[1] SCARAMUZZA D, FRAUNDORFER F. Visual odometry: part I: the first 30 years and fundamentals[J]. IEEE robotics & automation magazine, 2011, 18(4): 80-92.
[2] H?NE C, HENG L, LEE G H, et al. 3D visual perception for self-driving cars using a multi-camera system: calibration, mapping, localization, and obstacle detection[J]. Image and vision computing, 2017, 68: 14-27.
[3] STEINBRüCKER F, STURM J, CREMERS D. Real-time visual odometry from dense RGB-D images[C]//Proceedings of 2011 IEEE International Conference on Computer Vision Workshops. Barcelona, Spain: 2011: 719-722.
[4] NG P C, HENIKOFF S. SIFT: predicting amino acid changes that affect protein function[J]. Nucleic acids research, 2003, 31(13): 3812-3814.
[5] BAY H, ESS A, TUYTELAARS T, et al. Speeded-up robust features (SURF)[J]. Computer vision and image understanding, 2008, 110(3): 346-359.
[6] RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: an efficient alternative to SIFT or SURF[C]//Proceedings of 2011 IEEE International Conference on Computer Vision. Barcelona, Spain: 2011: 2564-2571.
[7] BESL P J, MCKAY N D. A method for registration of 3-D shapes[J]. IEEE transactions on pattern analysis and machine intelligence, 1992, 14(2): 239-256.
[8] FISCHLER M A, BOLLES R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6): 381-395.
[9] ROSTEN E, PORTER R, DRUMMOND T. Faster and better: a machine learning approach to corner detection[J]. IEEE transactions on pattern analysis and machine intelligence, 2010, 32(1): 105-119.
[10] CALONDER M, LEPETIT V, STRECHA C, et al. BRIEF: binary robust independent elementary features[C]//Proceeding of the 11th European Conference on Computer Vision. Heraklion: Springer, 2010: 778-792.
[11] 翟紫伶. 基于高斯尺度空间理论的ORB特征点检测[J]. 电子世界, 2016(10): 192-194
[12] 葛山峰, 于莲芝, 谢振. 基于ORB特征的目标跟踪算法[J]. 电子科技, 2017, 30(2): 98-100, 104
GE Shanfeng, YU Lianzhi, XIE Zhen. A target tracking algorithm based on ORB[J]. Electronic science and technology, 2017, 30(2): 98-100, 104
[13] 邢凯盛, 凌有铸, 陈孟元. ORB特征匹配的误匹配点剔除算法研究[J]. 电子测量与仪器学报, 2016, 30(8): 1255-1262
XING Kaisheng, LING Youzhu, CHEN Mengyuan. Mismatching points elimination algorithm for ORB feature matching[J]. Journal of electronic measurement and instrumentation, 2016, 30(8): 1255-1262
[14] STURM J, ENGELHARD N, ENDRES F, et al. A benchmark for the evaluation of RGB-D SLAM systems[C]//Proceedings of 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura, Portugal, 2012: 573-580.
[15] KERL C, STURM J, CREMERS D. Dense visual SLAM for RGB-D cameras[C]//Proceedings of 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo, Japan, 2013: 2100-2106.
[16] 高翔, 张涛. 视觉SLAM十四讲[M]. 北京: 电子工业出版社, 2017: 72-76.
Similar References:

Memo

-

Last Update: 2021-01-15

Copyright © CAAI Transactions on Intelligent Systems