[1]SHEN Kai,WANG Xiaofeng,YANG Yadong.Salient object detection based on bidirectional message link convolution neural network[J].CAAI Transactions on Intelligent Systems,2019,14(6):1152-1162.[doi:10.11992/tis.201812003]
Copy

Salient object detection based on bidirectional message link convolution neural network

References:
[1] ACHANTA R, HEMAMI S, ESTRADA F, et al. Frequency-tuned salient region detection[C]//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA, 2009:1597-1604.
[2] RONNEBERGER O, FISCHER P, BROX T. U-Net:convolutional networks for biomedical image segmentation[J]. arXiv:1505.04597, 2015.
[3] ITTI L, KOCH C, NIEBUR E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE transactions on pattern analysis and machine intelligence, 1998, 20(11):1254-1259.
[4] LIU Tie, ZHENG Nanning, DING Wei, et al. Video attention:learning to detect a salient object sequence[C]/Proceedings of 200819th International Conference on Pattern Recognition. Tampa, USA, 2008:1-4.
[5] LI Guanbin, YU Yizhou. Visual saliency based on multiscale deep features[J]. Computer science, 2015.
[6] WANG Lijun, LU Huchuan, RUAN Xiang, et al. Deep networks for saliency detection via local estimation and global search[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015:3183-3192.
[7] WANG Linzhao, WANG Lijun, LU Huchuan, et al. Salient object detection with recurrent fully convolutional networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2018, 41(7):1734-1746.
[8] CHENG Mingming, ZHANG Guoxin, MITRA N, et al. Global contrast based salient region detection[C]//Proceedings of 2011 IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs, USA, 2011:409-416.
[9] JIANG Zhuolin, DAVIS L S. Submodular salient region detection[C]//Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA, 2013:2043-2050.
[10] JUNG C, KIM C. A unified spectral-domain approach for saliency detection and its application to automatic object segmentation[J]. IEEE transactions on image processing, 2012, 21(3):1272-1283.
[11] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet:a deep convolutional encoder-decoder architecture for image segmentation[J]. Computer science, arXiv:1511.00561, 2015.
[12] REN Zhixiang, GAO Shenghua, CHIA L T, et al. Region-based saliency detection and its application in object recognition[J]. IEEE transactions on circuits and systems for video technology, 2014, 24(5):769-779.
[13] MU Nana, XU Xiaolong, ZHANG Xong, et al. Salient object detection using a covariance-based CNN model in low-contrast images[J]. Neural computing and applications, 2018, 29(8):181-192.
[14] ZHOU Li, YANG Zhaohui, ZHOU Zongtan, et al. Salient region detection using diffusion process on a two-layer sparse graph[J]. IEEE transactions on image processing, 2017, 26(12):5882-5894.
[15] LIU Tie, DUAN Haibin, SHANG Yuanyuan, et al. Automatic salient object sequence rebuilding for video segment analysis[J]. Science China information sciences, 2018, 61(1):012205.
[16] ZHANG Jing, FENG Shengwei, LI Da, et al. Image retrieval using the extended salient region[J]. Information sciences, 2017, 399:154-182.
[17] SINGH C, PREET KAUR K. A fast and efficient image retrieval system based on color and texture features[J]. Journal of visual communication and image representation, 2016, 41:225-238.
[18] XU Gongwen, XU Lina, LI Xiaomei, et al. An image retrieval method based on visual dictionary and saliency region[J]. International journal of signal processing, image processing and pattern recognition, 2016, 9(7):263-274.
[19] ZHAO Rui, OUYANG Wanli, LI Hongsheng, et al. Saliency detection by multi-context deep learning[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015:1265-1274.
[20] DAI Jifeng, HE Kaiming, LI Yi, et al. Instance-sensitive fully convolutional networks[J]. Computer science, 2016.
[21] YANG Wei, OUYANG Wanli, LI Hongsheng, et al. End-to-end learning of deformable mixture of parts and deep convolutional neural networks for human pose estimation[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016:3073-3082.
[22] HARIHARAN B, ARBELáEZ P, GIRSHICK R, et al. Hypercolumns for object segmentation and fine-grained localization[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015:447-456.
[23] LEE G, TAI Y W, KIM J. Deep saliency with encoded low level distance map and high level features[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016:660-668.
[24] LIU Nian, HAN Junwei. DHSNet:deep hierarchical saliency network for salient object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016:678-686.
[25] XIAO Fen, DENG Wenzheng, PENG Liangchan, et al. Multi-scale deep neural network for salient object detection[J]. IET image processing, 2018, 12(11):2036-2041.
[26] HOU Qibin, CHENG Mingming, HU Xiaowei, et al. Deeply supervised salient object detection with short connections[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017:5300-5309.
[27] ZHANG Pingping, WANG Dong, LU Huchuan, et al. Amulet:aggregating multi-level convolutional features for salient object detection[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy, 2017:202-211.
[28] JIN Xiaojie, CHEN Yunpeng, FENG Jiashi, et al. Multi-path feedback recurrent neural network for scene parsing[J]. Computer science, arXiv:1608.07706, 2016.
[29] CHEN Long, ZHANG Hanwang, XIAO Jun, et al. SCA-CNN:spatial and channel-wise attention in convolutional networks for image captioning[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017:6298-6306.
[30] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015:3431-3440.
[31] YAN Qiong, XU Li, SHI Jianping, et al. Hierarchical saliency detection[C]//Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA, 2013:1155-1162.
[32] YANG Zichao, HE Xiaodong, GAO Jianfeng, et al. Stacked attention networks for image question answering[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016:21-29.
[33] XU Huijuan, SAENKO K. Ask, attend and answer:exploring question-guided spatial attention for visual question answering[J]. Computer science, arXiv:1511.05234, 2015.
[34] WANG Fei, JIANG Mengqing, QIAN Chen, et al. Residual attention network for image classification[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017:6450-6458.
[35] XU K, BA J, KIROS R, et al. Show, attend and tell:neural image caption generation with visual attention[J]. Computer science, arXiv:1502.03044, 2015.
[36] SIMONYAN K, VEDALDI A, ZISSERMAN A. Deep inside convolutional networks:visualising image classification models and saliency maps[J]. Computer science, 2013.
[37] ZERIER M D, FERGUS R. Visualizing and understanding convolutional networks[J]. Computer science, 2013.
[38] MAHENDRAN A, VEDALDI A. Understanding deep image representations by inverting them[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015:5188-5196.
[39] WANG Lijun, OUYANG Wanli, WANG Xiaogang, et al. Visual tracking with fully convolutional networks[C]/Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile, 2015:3119-3127.
[40] ZHANG Pingping, WANG Dong, LU Huchuan, et al. Learning uncertain convolutional features for accurate saliency detection[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy, 2017:212-221.
[41] YANG Chuan, ZHANG Lihe, LU Huchuan, et al. Saliency detection via graph-based manifold ranking[C]//Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA, 2013:3166-3173.
[42] LI Yin, HOU Xiaodi, KOCH C, et al. The secrets of salient object segmentation[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA, 2014:280-287.
[43] EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The Pascal visual object classes (VOC) challenge[J]. International journal of computer vision, 2010, 88(2):303-338.
[44] GLOROT X, BENGIO Y. Understanding the difficulty of training deep feedforward neural networks[C]//Proceedings of the 13th International Conference on Artificial Intelligence and Statistics. Sardinia, Italy, 2010:249-256.
[45] TONG Na, LU Huchuan, RUAN Xiang, et al. Salient object detection via bootstrap learning[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015:1884-1892.
[46] WANG Tiantian, ZHANG Lihe, LU Huchuan, et al. Kernelized subspace ranking for saliency detection[C]//Proceedings of the 14thEuropean Conference on Computer Vision. Amsterdam, The Netherlands, 2016:450-466.
[47] JIANG Huaizu, WANG Jingdong, YUAN Zejian, et al. Salient object detection:a discriminative regional feature integration approach[C]//Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA, 2013:2083-2090.
[48] LI Xi, ZHAO Liming, WEI Lina, et al. DeepSaliency:multi-task deep neural network model for salient object detection[J]. IEEE transactions on image processing, 2016, 25(8):3919-3930.
[49] LI Guanbin, YU Yizhou. Deep contrast learning for salient object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016:478-487.
[50] ZHU Wangjiang, LIANG Shuang, WEI Yichen, et al. Saliency optimization from robust background detection[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA, 2014:2814-2821.
Similar References:

Memo

-

Last Update: 2019-12-25

Copyright © CAAI Transactions on Intelligent Systems