[1]HE Ruibo,DI Lan,LIANG Jiuzhen.An improved deep learning algorithm for road traffic identification[J].CAAI Transactions on Intelligent Systems,2020,15(6):1121-1130.[doi:10.11992/tis.201811009]
Copy

An improved deep learning algorithm for road traffic identification

References:
[1] KHAN J F, ADHAMI R R, et al. Traffic sign recognition based on pictogram contours[J]. IEEE ninth international workshop on image analysis for multimedia interactive services, 2011, 1(1): 83-96.
[2] YANG H M, LIU Chaolin, LIU Kunhao, et al. Traffic sign recognition in disturbing environments[C]//Proceedings of the 14th International Symposium on Methodologies for Intelligent Systems. Maebashi City, Japan, 2003: 252-261.
[3] BARTNECK N, RITTER W. Colour segmentation with polynomial classification[C]//Proceedings of the 11th IAPR International Conference on Pattern Recognition. Vol. II. Conference B: Pattern Recognition Methodology and Systems. The Hague, Netherlands, 1992: 635-638.
[4] SANDOVAL H, HATTORI T, KITAGAWA S, et al. Angle-dependent edge detection for traffic signs recognition[C]//Proceedings of 2000 IEEE Intelligent Vehicles Symposium. Dearborn, USA, 2000: 308-313.
[5] BARNES N, ZELINSKY A, FLETCHER L S. Real-time speed sign detection using the radial symmetry detector[J]. IEEE transactions on intelligent transportation systems, 2008, 9(2): 322-332.
[6] PAULO C F, CORREIA P L. Traffic sign recognition based on pictogram contours[C]//Proceedings of 2008 IEEE Ninth International Workshop on Image Analysis for Multimedia Interactive Services. Klagenfurt, Austria, 2008: 67-70.
[7] GAO X W, PODLADCHIKOVA L, SHAPOSHNIKOV D, et al. Recognition of traffic signs based on their colour and shape features extracted using human vision models[J]. Journal of visual communication and image representation, 2006, 17(4): 675-685.
[8] STALLKAMP J, SCHLIPSING M, SALMEN J, et al. Man vs. computer: benchmarking machine learning algorithms for traffic sign recognition[J]. Neural networks, 2012, 32: 323-332.
[9] SEEB?CK P. Deep learning in medical image analysis[D]. Vienna, Vienna: Vienna University of Technology, 2015: 333-338.
[10] 丁頠洋, 刘格, 王贤哲, 等. 基于深度学习的游行示威视频图像检测方法[J]. 指挥信息系统与技术, 2018, 9(6): 75-79
DING Weiyang, LIU Ge, WANG Xianzhe, et al. Demonstration video image detection method based on deep learning[J]. Command information system and technology, 2018, 9(6): 75-79
[11] YANG H M, LIU C L, LIU K H, et al. Traffic sign recognition in disturbing environments[C]//Foundations of Intelligent Systems, 14th International Symposium, ISMIS 2003.Maebashi, Japan, 2003:28-31.
[12] ISLAM K T, RAJ R G. Real-time (vision-based) road sign recognition using an artificial neural network[J]. Sensors, 2017, 14(4): 853.
[13] PICCIOLI G, DE MICHELI E, PARODI P, et al. Robust method for road sign detection and recognition[J]. Image and vision computing, 1996, 14(3): 209-223.
[14] 房泽平, 段建民, 郑榜贵. 基于特征颜色和SNCC的交通标志识别与跟踪[J]. 交通运输系统工程与信息, 2014, 14(1): 47-52
FANG Zeping, DUAN Jianmin, ZHENG Banggui. Traffic signs recognition and tracking based on feature color and SNCC algorithm[J]. Journal of transportation systems engineering and information technology, 2014, 14(1): 47-52
[15] ZHOU Jun, BAO Xu, LI Dawei, et al. Traffic video image segmentation model based on Bayesian and spatio-temporal Markov random field[J]. Journal of physics: conference series, 2017, 910(1): 012041.
[16] 陈利, 刘伟峰, 杨爱兰. 基于OSPA距离和特征点采样的路标识别算法[J]. 哈尔滨师范大学自然科学学报, 2017, 33(2): 55-57
CHEN Li, LIU Weifeng, YANG Ailan. A recognition algorithm for road signs based on the OSPA metric and characteristic point sampling[J]. Natural Science Journal of Harbin Normal University, 2017, 33(2): 55-57
[17] SHEN Dinggang, WU Guorong, SUK H I. Deep learning in medical image analysis[J]. Annual review of biomedical engineering, 2017, 19: 221-248.
[18] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016: 770-778.
[19] HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018: 7132-7141.
[20] 张懿, 刘旭, 李海峰. 数字RGB与YCbCr颜色空间转换的精度[J]. 江南大学学报(自然科学版), 2007, 6(2): 200-202
ZHANG Yi, LIU Xu, LI Haifeng. The precision of RGB color space convert to YCbCr color space[J]. Journal of JiangNan University (Natural Science Edition), 2007, 6(2): 200-202
[21] HU M K. Visual pattern recognition by moment invariants[J]. IRE transactions on information theory, 1962, 8(2): 179-187.
[22] 孙即祥. 模式识别中的特征提取与计算机视觉不变量[M]. 北京: 国防工业出版社, 2001.
[23] 温佩芝, 陈晓, 吴晓军, 等. 基于三次样条插值的GrabCut自动目标分割算法[J]. 计算机应用研究, 2014, 31(7): 2187-2190
WEN Peizhi, CHEN Xiao, WU Xiaojun, et al. Automatic target segmentation algorithm of GrabCut based on cubic spline interpolation[J]. Application research of computers, 2014, 31(7): 2187-2190
[24] ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]//Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland, 2014: 818-833.
[25] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, USA, 2012: 1097-1105.
[26] JIA Yangqing, SHELHAMER E, DONAHUE J, et al. Caffe: convolutional architecture for fast feature embedding[C]//Proceedings of the 22nd ACM International Conference on Multimedia. Orlando, USA, 2014: 675-678.
Similar References:

Memo

-

Last Update: 2020-12-25

Copyright © CAAI Transactions on Intelligent Systems