[1]CHU Derun,ZHOU Zhiping.Shared nearest neighbor adaptive spectral clustering algorithm based on axiomatic fuzzy set theory[J].CAAI Transactions on Intelligent Systems,2019,14(5):897-904.[doi:10.11992/tis.201810002]
Copy

Shared nearest neighbor adaptive spectral clustering algorithm based on axiomatic fuzzy set theory

References:
[1] XU Dongkuan, TIAN Yingjie. A comprehensive survey of clustering algorithms[J]. Annals of data science, 2015, 2(2):165-193.
[2] LIU Hanqiang, ZHAO Feng, JIAO Licheng. Fuzzy spectral clustering with robust spatial information for image segmentation[J]. Applied soft computing, 2012, 12(11):3636-3647.
[3] TUNG F, WONG A, CLAUSI D A. Enabling scalable spectral clustering for image segmentation[J]. Pattern recognition, 2010, 43(12):4069-4076.
[4] ZENG Shan, HUANG Rui, KANG Zhen, et al. Image segmentation using spectral clustering of Gaussian mixture models[J]. Neurocomputing, 2014, 144:346-356.
[5] JIANG J Q, DRESS A W M, YANG Genke. A spectral clustering-based framework for detecting community structures in complex networks[J]. Applied mathematics letters, 2009, 22(9):1479-1482.
[6] FORESTIER G, WEMMERT C. Semi-supervised learning using multiple clusterings with limited labeled data[J]. Information sciences, 2016, 361-362:48-65.
[7] 赵晓晓, 周治平. 结合稀疏表示与约束传递的半监督谱聚类算法[J]. 智能系统学报, 2018, 13(5):855-863 ZHAO Xiaoxiao, ZHOU Zhiping. A semi-supervised spectral clustering algorithm combined with sparse representation and constraint propagation[J]. CAAI transactions on intelligent systems, 2018, 13(5):855-863
[8] 林大华, 杨利锋, 邓振云, 等. 稀疏样本自表达子空间聚类算法[J]. 智能系统学报, 2016, 11(5):696-702 LIN Dahua, YANG Lifeng, DENG Zhenyun, et al. Sparse sample self-representation for subspace clustering[J]. CAAI transactions on intelligent systems, 2016, 11(5):696-702
[9] CHANG Yanshuo, NIE Feiping, LI Zhihui, et al. Refined spectral clustering via embedded label propagation[J]. Neural computation, 2017, 29(12):3381-3396.
[10] NG A Y, JORDAN M I, WEISS Y. On spectral clustering:analysis and an algorithm[C]//Proceedings of the 14th International Conference on Neural Information Processing Systems:Natural and Synthetic. Vancouver, Canada, 2001:849?856.
[11] YE Xiucai, SAKURAI T. Robust similarity measure for spectral clustering based on shared neighbors[J]. ETRI journal, 2016, 38(3):540-550.
[12] JIA Hongjie, DING Shifei, DU Mingjing. Self-tuning p -spectral clustering based on shared nearest neighbors[J]. Cognitive computation, 2015, 7(5):622-632.
[13] 王雅琳, 陈斌, 王晓丽, 等. 基于密度调整的改进自适应谱聚类算法[J]. 控制与决策, 2014, 29(9):1683-1687 WANG Yalin, CHEN Bin, WANG Xiaoli, et al. Improved adaptive spectral clustering algorithm based on density adjustment[J]. Control and decision, 2014, 29(9):1683-1687
[14] SHI Jianbo, MALIK J. Normalized cuts and image segmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2000, 22(8):888-905.
[15] LIU Xiaodong. The fuzzy theory based on AFS algebras and AFS structure[J]. Journal of mathematical analysis and applications, 1998, 217(2):459-478.
[16] LIU Xiaodong, PEDRYCZ W, ZHANG Qingling. Axiomatics fuzzy sets logic[C]//Proceedings of the12th IEEE International Conference on Fuzzy Systems. St Louis, USA, 2003:55-60.
[17] LIU Xiaodong, PEDRYCZ W. Axiomatic fuzzy set theory and its applications[M]. Berlin, Heidelberg:Springer, 2009.
[18] LIU Xiaodong, PEDRYCZ W, CHAI Tianyou, et al. The development of fuzzy rough sets with the use of structures and algebras of axiomatic fuzzy sets[J]. IEEE transactions on knowledge and data engineering, 2009, 21(3):443-462.
[19] LIU Xiaodong, REN Yan. Novel artificial intelligent techniques via AFS theory:feature selection, concept categorization and characteristic description[J]. Applied soft computing, 2010, 10(3):793-805.
[20] LIU Xiaodong, WANG Xianchang, PEDRYCZ W. Fuzzy clustering with semantic interpretation[J]. Applied soft computing, 2015, 26:21-30.
[21] LIU Xiaodong, WANG Wei, CHAI T. The fuzzy clustering analysis based on AFS theory[J]. IEEE transactions on systems, man, and cybernetics, part B, 2005, 35(5):1013-1027.
[22] ZELNIK-Manor L, PERONA P. Self-tuning spectral clustering[C]//Proceedings of the 17th International Conference on Neural Information Processing Systems. Pasadena, USA, 2004:1601?1608.
[23] YAN Donghui, HUANG Ling, JORDAN M I. Fast approximate spectral clustering[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris, France, 2009:907?916.
[24] LI Mu, KWOK J T, LU Baoliang. Making large-scale nystr?m approximation possible[C]//Proceedings of the 27th International Conference on International Conference on Machine Learning. Haifa, Israel, 2010:631?638.
[25] CAI Deng, CHEN Xinlei. Large scale spectral clustering via landmark-based sparse representation[J]. IEEE transactions on cybernetics, 2015, 45(8):1669-1680.
[26] SCH?LKOPF B, PLATT J, HOFMANN T. A local learning approach for clustering[C]//Proceedings of the 19th International Conference on Neural Information Processing Systems. Doha, Qatar, 2007:1529?1536.
[27] STREHL A, GHOSH J. Cluster ensembles:a knowledge reuse framework for combining partitionings[C]//Proceedings of the 18th National Conference on Artificial Intelligence. Alberta, Canada, 2003:583–617.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems