[1]QI Cheng,SHI Xudong,XIONG Weili.A just-in-time learning soft sensor modeling method based on the second-order similarity[J].CAAI Transactions on Intelligent Systems,2020,15(5):910-918.[doi:10.11992/tis.201809040]
Copy

A just-in-time learning soft sensor modeling method based on the second-order similarity

References:
[1] 汤健, 柴天佑, 刘卓, 等. 基于更新样本智能识别算法的自适应集成建模[J]. 自动化学报, 2016, 42(7): 1040-1052
TANG Jian, CHAI Tianyou, LIU Zhuo, et al. Adaptive ensemble modelling approach based on updating sample intelligent identification[J]. Acta automatica sinica, 2016, 42(7): 1040-1052
[2] ZHENG Junhua, SONG Zhihuan. Semisupervised learning for probabilistic partial least squares regression model and soft sensor application[J]. Journal of process control, 2018, 64: 123-131.
[3] LI Han, YOU Shijun, ZHANG Huan, et al. Analyzing the impact of heating emissions on air quality index based on principal component regression[J]. Journal of cleaner production, 2018, 171: 1577-1592.
[4] ZHENG Jianqiao, WANG Hongfang, ZHOU Hongpeng, et al. A using of just-in-time learning based data driven method in continuous stirred tank heater[C]//Proceedings of the 7th International Conference on Intelligent Control and Information Processing. Siem Reap, Cambodia, 2016: 98-104.
[5] PENG Xin, TANG Yang, HE Wangli, et al. A just-in-time learning based monitoring and classification method for hyper/hypocalcemia diagnosis[J]. IEEE/ACM transactions on computational biology and bioinformatics, 2018, 15(3): 788-801.
[6] YIN Shen, GAO Huijun, QIU Jianbin, et al. Fault detection for nonlinear process with deterministic disturbances: a just-in-time learning based data driven method[J]. IEEE transactions on cybernetics, 2017, 47(11): 3649-3657.
[7] CHEN Kun, LIU Yi. Adaptive weighting just-in-time-learning quality prediction model for an industrial blast furnace[J]. ISIJ international, 2017, 57(1): 107-113.
[8] NIU Dapeng, GAO Huiyuan, LIU Yuanqing. Modeling of penicillin fermentation process based on FCM and improved Just-in-Time learning algorithm[C]//Proceedings of the 36th Chinese Control Conference. Dalian, China, 2017: 10328-10332.
[9] GE Zhiqiang, SONG Zhihuan. A comparative study of just-in-time-learning based methods for online soft sensor modeling[J]. Chemometrics and intelligent laboratory systems, 2010, 104(2): 306-317.
[10] 张宏伟, 李鹏飞, 景军锋, 等. 基于即时学习的软测量建模实时性改进[J]. 西安工程大学学报, 2014, 28(6): 750-754
ZHANG Hongwei, LI Pengfei, JING Junfeng, et al. A real-time performance improvement strategy of Just-In-Time-Learning based on soft sensor[J]. Journal of Xi’an Polytechnic University, 2014, 28(6): 750-754
[11] 牛大鹏, 刘元清. 基于改进即时学习算法的湿法冶金浸出过程建模[J]. 化工学报, 2017, 68(7): 2873-2879
NIU Dapeng, LIU Yuanqing. Modeling hydrometallurgical leaching process based on improved just-in-time learning algorithm[J]. CIESC journal, 2017, 68(7): 2873-2879
[12] CRIBBIN T. Discovering latent topical structure by second-order similarity analysis[J]. Journal of the American society for information science and technology, 2011, 62(6): 1188-1207.
[13] 刘毅, 金福江, 高增梁. 时变过程在线辨识的即时递推核学习方法研究[J]. 自动化学报, 2013, 39(5): 602-609
LIU Yi, JIN Fujiang, GAO Zengliang. Online identification of time-varying processes using just-in-time recursive kernel learning approach[J]. Acta automatica sinica, 2013, 39(5): 602-609
[14] LIU Yi, GAO Zengliang. Industrial melt index prediction with the ensemble anti-outlier just-in-time Gaussian process regression modeling method[J]. Journal of applied polymer science, 2015, 132(22): 41958.
[15] WANG Haijun, GAO Xinbo, ZHANG Kaibing, et al. Single image super-resolution using Gaussian process regression with dictionary-based sampling and student-t likelihood[J]. IEEE transactions on image processing, 2017, 26(7): 3556-3568.
[16] HAN Jianan, ZHANG Xiaoping, WANG Fang. Gaussian process regression stochastic volatility model for financial time series[J]. IEEE journal of selected topics in signal processing, 2016, 10(6): 1015-1028.
[17] XIONG Weili, SHI Xudong. Soft sensor modeling with a selective updating strategy for Gaussian process regression based on probabilistic principle component analysis[J]. Journal of the franklin institute, 2018, 355(12): 5336-5349.
[18] 何志昆, 刘光斌, 赵曦晶, 等. 高斯过程回归方法综述[J]. 控制与决策, 2013, 28(8): 1121-1129, 1137
HE Zhikun, LIU Guangbin, ZHAO Xijing, et al. Overview of Gaussian process regression[J]. Control and decision, 2013, 28(8): 1121-1129, 1137
[19] YU Jie. Multiway Gaussian mixture model based adaptive kernel partial least squares regression method for soft sensor estimation and reliable quality prediction of nonlinear multiphase batch processes[J]. Industrial & engineering chemistry research, 2012, 51(40): 13227-13237.
[20] LIU Ziwei, GE Zhiqiang, CHEN Guangjie, et al. Adaptive soft sensors for quality prediction under the framework of Bayesian network[J]. Control engineering practice, 2018, 72: 19-28.
Similar References:

Memo

-

Last Update: 2021-01-15

Copyright © CAAI Transactions on Intelligent Systems