[1]ZHANG Xiaokun,LIU Yan,CHEN Jing.Representation learning using network embedding based on external word vectors[J].CAAI Transactions on Intelligent Systems,2019,14(5):1056-1063.[doi:10.11992/tis.201809037]
Copy

Representation learning using network embedding based on external word vectors

References:
[1] CUI Peng, WANG Xiao, PEI Jian, et al. A survey on network embedding[J]. IEEE transactions on knowledge and data engineering, 2019, 31(5):833-852.
[2] LIBEN NOWELL D, KLEINBERG J. The link prediction problem for social networks[J]. Journal of the American society for information science and technology, 2007, 58(7):1019-1031.
[3] LANCICHINETTI A, FORTUNATO S. Community detection algorithms:a comparative analysis[J]. Physical review E, 2009, 80:056117.
[4] BHAGAT S, CORMODE G, MUTHUKRISHNAN S. Node classification in social networks[M]//AGGARWAL C C. Social Network Data Analytics. Boston, MA:Springer, 2011:115-148.
[5] DONG Xin, HALEVY A, MADHAVAN J, et al. Similarity search for web services[C]//Proceedings of the Thirtieth International Conference on Very Large Data Bases. Toronto, Canada, 2004:372-383.
[6] BASTIAN M, HEYMANN S, JACOMY M. Gephi:an open source software for exploring and manipulating networks[C]//Proceedings of International AAAI Conference on Weblogs and Social Media. San Jose, California, USA, 2009:361-362.
[7] PEROZZI B, AL-RFOU R, SKIENA S. Deepwalk:online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA, 2014:701-710.
[8] TANG Jian, QU Meng, WANG Mingzhe, et al. LINE:large-scale information network embedding[C]//Proceedings of the 24th International Conference on World Wide Web. Florence, Italy, 2005:1067-1077.
[9] GROVER A, LESKOVEC J. node2vec:scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, California, USA, 2016:855-864.
[10] YANG Cheng, LIU Zhiyuan, ZHAO Deli, et al. Network representation learning with rich text information[C]//Proceedings of the 24th International Conference on Artificial Intelligence. Buenos Aires, Argentina, 2015:2111-2117.
[11] TU Cuchao, LIU Han, LIU Zhiyuan, et al. Cane:context-aware network embedding for relation modeling[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Vancouver, Canada, 2007:1722-1731.
[12] TANG Lei, LIU Huan. Scalable learning of collective behavior based on sparse social dimensions[C]//Proceedings of the 18th ACM Conference on Information and Knowledge Management. Hong Kong, China, 2009:1107-1116.
[13] BALASUBRAMANIAN M, SCHWARTZ E L, TENENBAUM J B, et al. The isomap algorithm and topological stability[J]. Science, 2002, 295(5552):7-7.
[14] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada, 2013:3111-3119.
[15] RECHT B, Ré C, WRIGHT S J, et al. Hogwild:a lock-free approach to parallelizing stochastic gradient descent[C]//Proceedings of Advances in Neural Information Processing Systems. 2011:693-701.
[16] CAO Shaosheng, LU Wei, XU Qiongkai. Grarep:learning graph representations with global structural information[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. Melbourne, Australia, 2005:891-900.
[17] TU Cunchao, ZHANG Weicheng, LIU Zhiyuan, et al. Max-margin deepwalk:discriminative learning of network representation[C]//Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. New York, USA, 2006:3889-3895.
[18] PAGE L, BRIN S, MOTWANI R, et al. The PageRank citation ranking:Bringing order to the web[R]. Palo Alto:Stanford InfoLab, 1999.
[19] KINGMA D, BA J. Adam:a method for stochastic optimization[C]//Proceedings of the 3rd International Conference on Learning Representations. San Diago, USA, 2015.
[20] HSU C W, CHANG C C, LIN C J. A practical guide to support vector classification. http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.
[21] HANLEY J A, MCNEIL B J. The meaning and use of the area under a Receiver Operating Characteristic (ROC) curve[J]. Radiology, 1982, 143:29-36.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems