[1]SHEN Xiangxiang,HOU Xinwen,YIN Chuanhuan.State attention in deep reinforcement learning[J].CAAI Transactions on Intelligent Systems,2020,15(2):317-322.[doi:10.11992/tis.201809033]
Copy

State attention in deep reinforcement learning

References:
[1] LI Yuxi. Deep reinforcement learning: an overview[EB/OL]. [2018-01-17]https://arxiv.org/abs/1701.07274.
[2] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533.
[3] SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529(7587): 484-489.
[4] VINYALS O, EWALDS T, BARTUNOV S, et al. StarCraft II: a new challenge for reinforcement learning[EB/OL]. [2018-01-17]https://arXiv: 1708.04782, 2017.
[5] ONTANON S, SYNNAEVE G, URIARTE A, et al. A survey of real-time strategy game AI research and competition in StarCraft[J]. IEEE transactions on computational intelligence and AI in games, 2013, 5(4): 293-311.
[6] SYNNAEVE G, BESSIERE P. A dataset for StarCraft AI & an example of armies clustering[C]//Artificial Intelligence in Adversarial Real-Time Games. Palo Alto, USA, 2012: 25-30.
[7] SYNNAEVE G, BESSIèRE P. A Bayesian model for opening prediction in RTS games with application to StarCraft[C]//Proceedings of 2011 IEEE Conference on Computational Intelligence and Games. Seoul, South Korea, 2011: 281-288.
[8] JUSTESEN N, RISI S. Learning macromanagement in starcraft from replays using deep learning[C]//Proceedings of 2017 IEEE Conference on Computational Intelligence and Games. New York, USA, 2017: 162-169.
[9] DODGE J, PENNEY S, HILDERBRAND C, et al. How the experts do it: assessing and explaining agent behaviors in real-time strategy games[C]//Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. Montreal QC, Canada, 2018.
[10] PENNEY S, DODGE J, HILDERBRAND C, et al. Toward foraging for understanding of starcraft agents: an empirical study[C]//Proceedings of the 23rd International Conference on Intelligent User Interfaces. Tokyo, Japan, 2018: 225-237.
[11] PENG Peng, WEN Ying, YANG Yaodong, et al. Multiagent bidirectionally-coordinated nets for learning to play starcraft combat games[EB/OL]. [2018-01-17]https://arXiv: 1703.10069, 2017.
[12] SHAO Kun, ZHU Yuanheng, ZHAO Dongbin, et al. StarCraft micromanagement with reinforcement learning and curriculum transfer learning[J]. IEEE transactions on emerging topics in computational intelligence, 2019, 3(1): 73-84.
[13] WENDER S, WATSON I. Applying reinforcement learning to small scale combat in the real-time strategy game StarCraft: Broodwar[C]//Proceedings of 2012 IEEE Conference on Computational Intelligence and Games. Granada, Spain, 2012: 402-408.
[14] DENIL M, BAZZANI L, LAROCHELLE H, et al. Learning where to attend with deep architectures for image tracking[J]. Neural computation, 2012, 24(8): 2151-2184.
[15] BAHDANAU D, CHO K, BENGIO Y, et al. Neural machine translation by jointly learning to align and translate[C]//Proceedings of International Conference on Learning Representations. 2015.
[16] MNIH V, HEESS N, GRAVES A, et al. Recurrent models of visual attention[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada, 2014: 2204-2212.
[17] MNIH V, BADIA A P, MIRZA M, et al. Asynchronous methods for deep reinforcement learning[C]//Proceedings of the 33rd International Conference on Machine Learning. New York USA, 2016: 1928-1937.
[18] WILLIAMS R J. Simple statistical gradient-following algorithms for connectionist reinforcement learning[J]. Machine learning, 1992, 8(3/4): 229-256.
[19] ILYAS A, ENGSTROM L, SANTURKAR S, et al. Are deep policy gradient algorithms truly policy gradient algorithms? [EB/OL]. [2018-01-17]https://arXiv: 1811.02553, 2018.
[20] DeepMind. DeepMind mini games[EB/OL]. (2017-08-10)[2018-09-10]. https://github.com/deepmind/pysc2/blob/master/docs/mini_games.md.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems