[1]ZHOU Hao,WANG Li.Chinese opinion target extraction based on fusion of semantic and syntactic information[J].CAAI Transactions on Intelligent Systems,2019,14(1):171-178.[doi:10.11992/tis.201809029]
Copy

Chinese opinion target extraction based on fusion of semantic and syntactic information

References:
[1] QIU Guang, LIU Bing, BU Jiajun, et al. Expanding domain sentiment lexicon through double propagation[C]//Proceedings of the 21st International Jont Conference on Artifical Intelligence. Pasadena, USA, 2009:1199-1204.
[2] ZHAI Zhongwu, XU Hua, KANG Bada, et al. Exploiting effective features for Chinese sentiment classification[J]. Expert systems with applications, 2011, 38(8):9139-9146.
[3] ZHANG Lei, LIU Bing, LIM S H, et al. Extracting and ranking product features in opinion documents[C]//Proceedings of the 23rd International Conference on Computational Linguistics:Posters. Beijing, China, 2010:1462-1470.
[4] 孟园, 王洪伟. 中文评论产品特征与观点抽取方法研究[J]. 现代图书情报技术, 2016, 32(2):16-24 MENG Yuan, WANG Hongwei. Extracting product feature and user opinion from Chinese reviews[J]. Data analysis and knowledge discovery, 2016, 32(2):16-24
[5] 廖祥文, 陈兴俊, 魏晶晶, 等. 基于多层关系图模型的中文评价对象与评价词抽取方法[J]. 自动化学报, 2017, 43(3):462-471 LIAO Xiangwen, CHEN Xingjun, WEI Jingjing, et al. A multi-layer relation graph model for extracting opinion targets and opinion words[J]. Acta automatica sinica, 2017, 43(3):462-471
[6] 丁晟春, 吴婧婵媛, 李霄. 基于CRFs和领域本体的中文微博评价对象抽取研究[J]. 中文信息学报, 2016, 30(4):159-166 DING Shengchun, WU Jingchanyuan, LI Xiao. Opinion targets extraction from Chinese microblogs based on conditional random fields and domain ontology[J]. Journal of Chinese information processing, 2016, 30(4):159-166
[7] PENG Nanyun, DREDZE M. Improving named entity recognition for Chinese social media with word segmentation representation learning[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Berlin, Germany, 2016:149-155.
[8] MA Xuezhe, HOVY E. End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Berlin, Germany, 2016:1064-1074.
[9] PHAM T H, LE-HONG P. End-to-end recurrent neural network models for Vietnamese named entity recognition:word-level vs. Character-level[C]//Proceedings of the 15th International Conference of the Pacific Association for Computational Linguistics. Yangon, Myanmar, 2017:219-232.
[10] JEBBARA S, CIMIANO P. Improving opinion-target extraction with character-level word embeddings[C]//Proceedings of the 1st Workshop on Subword and Character Level Models in NLP. Copenhagen, Denmark, 2017:159-167.
[11] HAMMERTON J. Named entity recognition with long short-term memory[C]//Proceedings of the 7th Conference on Natural Language Learning at HLT-NAACL 2003. Edmonton, Canada, 2003:172-175.
[12] CHEN Xinxiong, XU Lei, LIU Zhiyuan, et al. Joint learning of character and word embeddings[C]//Proceedings of the 24th International Conference on Artificial Intelligence. Buenos Aires, Argentina, 2015:1236-1242.
[13] YU Mo, DREDZE M. Improving lexical embeddings with semantic knowledge[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Baltimore, USA, 2014:545-550.
[14] DOS SANTOS C N, GATTI M. Deep convolutional neural networks for sentiment analysis of short texts[C]//Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics. Dublin, Ireland, 2014:69-78.
[15] ZHENG Xiaoqing, CHEN Hanyang, XU Tianyu. Deep learning for Chinese word segmentation and POS tagging[C]//Proceedings of 2013 Conference on Empirical Methods in Natural Language Processing. Seattle, USA, 2013:647-657.
[16] SPITKOVSKY V I, ALSHAWI H, JURAFSKY D, et al. Viterbi training improves unsupervised dependency parsing[C]//Proceedings of the 14th Conference on Computational Natural Language Learning. Uppsala, Sweden, 2010:9-17.
[17] YADAV V, BETHARD S. A survey on recent advances in named entity recognition from deep learning models[C]//Proceedings of the 27th International Conference on Computational Linguistics. Santa Fe, USA, 2018:2145-2158.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems