[1]YAN Fei,WANG Xiaodong.A robust, semi-supervised, and multi-label feature selection method[J].CAAI Transactions on Intelligent Systems,2019,14(4):812-819.[doi:10.11992/tis.201809017]
Copy

A robust, semi-supervised, and multi-label feature selection method

References:
[1] YU Lei, LIU Huan. Feature selection for high-dimensional data:a fast correlation-based filter solution[C]//Proceedings of the 20th International Conference on International Conference on Machine Learning. Washington DC, USA, 2003:856-863.
[2] 胡敏杰, 林耀进, 杨红和, 等. 基于特征相关的谱特征选择算法[J]. 智能系统学报, 2017, 12(4):519-525 HU Minjie, LIN Yaojin, YANG Honghe, et al. Spectral feature selection based on feature correlation[J]. CAAI transactions on intelligent systems, 2017, 12(4):519-525
[3] YANG Yi, SHEN Hengtao, MA Zhigang, et al. l2,1-norm regularized discriminative feature selection for unsupervised learning[C]//Proceedings of the 22th International Joint Conference on Artificial Intelligence. Barcelona, Spain, 2011:1589-1594.
[4] WANG Xiaodong, ZHANG Xu, ZENG Zhiqiang, et al. Unsupervised spectral feature selection with l1 norm graph[J]. Neurocomputing, 2016, 200:47-54.
[5] DOQUIRE G, VERLEYSEN M. A graph Laplacian based approach to semi-supervised feature selection for regression problems[J]. Neurocomputing, 2013, 121:5-13.
[6] LIU Yun, NIE Feiping, WU Jigang, et al. Efficient semi-supervised feature selection with noise insensitive trace ratio criterion[J]. Neurocomputing, 2013, 105:12-18.
[7] MA Zhigang, NIE Feiping, YANG Yi, et al. Discriminating joint feature analysis for multimedia data understanding[J]. IEEE transactions on multimedia, 2012, 14(6):1662-1672.
[8] JI Shuiwang, TANG Lei, YU Shipeng, et al. A shared-subspace learning framework for multi-label classification[J]. ACM transactions on knowledge discovery from data, 2010, 4(2):8.
[9] 张俐, 王枞. 基于最大相关最小冗余联合互信息的多标签特征选择算法[J]. 通信学报, 2018, 39(5):111-122 ZHANG Li, WANG Cong. Multi-label feature selection algorithm based on joint mutual information of max-relevance and min-redundancy[J]. Journal on communications, 2018, 39(5):111-122
[10] ALALGA A, BENABDESLEM K, TALEB N. Soft-constrained Laplacian score for semi-supervised multi-label feature selection[J]. Knowledge and information systems, 2016, 47(1):75-98.
[11] CHANG Xiaojun, NIE Feiping, YANG Yi, et al. A convex formulation for semi-supervised multi-label feature selection[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence. Québec City, Québec, Canada, 2014:1171-1177.
[12] ZHOU Sihang, LIU Xinwang, ZHU Chengzhang, et al. Spectral clustering-based local and global structure preservation for feature selection[C]//Proceedings of 2014 International Joint Conference on Neural Networks. Beijing, China, 2014:550-557.
[13] NIE Feiping, WANG Hua, HUANG Heng, et al. Unsupervised and semi-supervised learning via l1 norm graph[C]//Proceedings of 2011 International Conference on Computer Vision. Barcelona, Spain, 2011:2268-2273.
[14] LIU Yun, GUO Yiming, WANG Hua, et al. Semi-supervised classifications via elastic and robust embedding[C]//Proceedings of the 31th AAAI Conference on Artificial Intelligence. San Francisco, USA, 2017:2294-2300.
[15] SCH?LKOPF B, PLATT J, HOFMANN T. Multi-instance multi-label learning with application to scene classification[C]//Proceedings of the 13th International Conference on Neural Information Processing Systems. Hong Kong, China, 2006:1609-1616.
[16] ELISSEEFF A, WESTON J. A kernel method for multi-labelled classification[C]//Proceedings of the 14th International Conference on Neural Information Processing Systems. Vancouver, Canada, 2001:681-687.
[17] UEDA N, SAITO K. Parametric mixture models for multi-labeled text[C]//Proceedings of the 15th International Conference on Neural Information Processing Systems. Cambridge, MA, USA, 2002:737-744.
[18] ZHANG Minling, ZHOU Zhihua. ML-KNN:a lazy learning approach to multi-label learning[J]. Pattern recognition, 2007, 40(7):2038-2048.
[19] MARON O, RATAN A L. Multiple-instance learning for natural scene classification[C]//Proceedings of 15th International Conference on Machine Learning. San Francisco, CA, USA, 1998:341-349.
Similar References:

Memo

-

Last Update: 2019-08-25

Copyright © CAAI Transactions on Intelligent Systems