[1]WANG Kun,XIE Zhenping,CHEN Meijie.Modeling knowledge network on associative relations based on graph reduction[J].CAAI Transactions on Intelligent Systems,2019,14(4):679-688.[doi:10.11992/tis.201808009]
Copy

Modeling knowledge network on associative relations based on graph reduction

References:
[1] SINGHAL A. Introducing the knowledge graph:things, not strings[R]. America:Official Blog of Google, 2012.
[2] SIMMONS R F. Technologies for machine translation[J]. Future generation computer systems, 1986, 2(2):83-94.
[3] SIMMONS R F. Natural language question-answering systems:1969[J]. Communications of the ACM, 1970, 13(1):15-30.
[4] YU Y H, SIMMONS R F. Truly parallel understanding of text[C]//Proceedings of the Eighth National Conference on Artificial Intelligence. Boston, Massachusetts, 1990:996-1001.
[5] ARENAS M, DíAZ G, FOKOUE A, et al. A principled approach to bridging the gap between graph data and their schemas[J]. Proceedings of the VLDB endowment, 2014, 7(8):601-612.
[6] RAU L F. Extracting company names from text[C]//Proceedings. The Seventh IEEE Conference on Artificial Intelligence Application. Miami Beach, USA, 1991:29-32.
[7] LIU Xiaohua, ZHANG Shaodian, WEI Furu, et al. Recognizing named entities in tweets[C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:Human Language Technologies. Portland, Oregon, 2011:359-367.
[8] SOCHER R, CHEN Dandi, MANNING C D, et al. Reasoning with neural tensor networks for knowledge base completion[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada, 2013:926-934.
[9] BOCCALETTI S, LATORA V, MORENO Y, et al. Complex networks:Structure and dynamics[J]. Physics reports, 2006, 424(4/5):175-308.
[10] 徐增林, 盛泳潘, 贺丽荣, 等. 知识图谱技术综述[J]. 电子科技大学学报, 2016, 45(4):589-606 XU Zenglin, SHENG Yongpan, HE Lirong, et al. Review on knowledge graph techniques[J]. Journal of university of electronic science and technology of China, 2016, 45(4):589-606
[11] 刘峤, 李杨, 段宏, 等. 知识图谱构建技术综述[J]. 计算机研究与发展, 2016, 53(3):582-600 LIU Qiao, LI Yang, DUAN Hong, et al. Knowledge graph construction techniques[J]. Journal of computer research and development, 2016, 53(3):582-600
[12] LI Yang, WANG Chi, HAN Fangqiu, et al. Mining evidences for named entity disambiguation[C]//Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Chicago, USA, 2013:1070-1078.
[13] HAN Xianpei, SUN Le, ZHAO Jun. Collective entity linking in web text:a graph-based method[C]//Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. Beijing, China, 2011:765-774.
[14] LEE T W, LEWICKI M S, GIROLAMI M, et al. Blind source separation of more sources than mixtures using overcomplete representations[J]. IEEE signal processing letters, 1999, 6(4):87-90.
[15] LU Shaoyuan, HSU K H, KUO Lijing. A semantic service match approach based on wordNet and SWRL rules[C]//Proceedings of the 2013 IEEE 10th International Conference on e-Business Engineering. Coventry, UK, 2013:419-422.
[16] 刘克彬, 李芳, 刘磊, 等. 基于核函数中文关系自动抽取系统的实现[J]. 计算机研究与发展, 2007, 44(8):1406-1411 LIU Kebin, LI Fang, LIU Lei, et al. Implementation of a kernel-based Chinese relation extraction system[J]. Journal of computer research and development, 2007, 44(8):1406-1411
[17] CARLSON A, BETTERIDGE J, WANG R C, et al. Coupled semi-supervised learning for information extraction[C]//Proceedings of the Third ACM International Conference on Web Search and Data Mining. New York, USA, 2010:101-110.
[18] ZHANG Yimin, ZHOU J F. A trainable method for extracting Chinese entity names and their relations[C]//Proceedings of the 2nd Workshop on Chinese Language Processing:Held in Conjunction with the 38th Annual Meeting of the Association for Computational Linguistics. Hong Kong, China, 2000:66-72.
[19] BANKO M, CAFARELLA M J, SODERLAND S, et al. Open information extraction from the web[C]//Proceedings of the 20th International Joint Conference on Artifical Intelligence. Hyderabad, India, 2007:2670-2676.
[20] 谢振平, 金晨, 刘渊. 基于建构主义学习理论的个性化知识推荐模型[J]. 计算机研究与发展, 2018, 55(1):125-138 XIE Zhenping, JIN Chen, LIU Yuan. Personalized knowledge recommendation model based on constructivist learning theory[J]. Journal of computer research and development, 2018, 55(1):125-138
[21] 刘知远, 孙茂松, 林衍凯, 等. 知识表示学习研究进展[J]. 计算机研究与发展, 2016, 53(2):247-261 LIU Zhiyuan, SUN Maosong, LIN Yankai. Knowledge representation learning:a review[J]. Journal of computer research and development, 2016, 53(2):247-261
[22] MICHEL A N, FARRELL J A. Associative memories via artificial neural networks[J]. IEEE control systems magazine, 1990, 10(3):6-17.
[23] BASSETT D S, MATTAR M G. A network neuroscience of human learning:potential to inform quantitative theories of brain and behavior[J]. Trends in cognitive sciences, 2017, 21(4):250-264.
[24] 刘冰瑶, 马静, 李晓峰. 一种"特征降维"文本复杂网络的话题表示模型[J]. 数据分析与知识发现, 2017, 1(11):53-61 LIU Bingyao, MA Jing, LI Xiaofeng. Topic representation model based on "feature dimensionality reduction"[J]. Data analysis and knowledge discovery, 2017, 1(11):53-61
[25] SUBBIAN K, AGGARWAL C, SRIVASTAVA J. Mining influencers using information flows in social streams[J]. ACM transactions on knowledge discovery from data, 2016, 10(3):26.
[26] ROSENBERG E. Maximal entropy coverings and the information dimension of a complex network[J]. Physics letters A, 2017, 381(6):574-580.
[27] 刘绍毓, 李弼程, 郭志刚, 等. 实体关系抽取研究综述[J]. 信息工程大学学报, 2016, 17(5):541-547 LIU Shaoyu, LI Bicheng, GUO Zhigang, et al. Review of entity relation extraction[J]. Journal of Information Engineering University, 2016, 17(5):541-547
[28] 美食百科[EB/OL].[2017-10-11]. Meishi-baike[EB/OL].[201-10-11].
[29] 食品百科[EB/OL].[2017-10-12]. http://www.foodbk.com/. Foodbk[EB/OL].[2017-10-12]. http://www.foodbk.com/.
[30] 王灿辉. 搜狐新闻数据[EB/OL].[2017-11-03]. http://www.sogou.com/labs/resource/cs.php. WANG Canhui. Sohu news data[EB/OL].[2017-11-03]. http://www.sogou.com/labs/resource/cs.php.
[31] 搜狐体育[EB/OL].[2017-11-05]. http://sports.sohu.com/. Sohu Sports[EB/OL].[2017-11-05]. http://sports.sohu.com/.
[32] SHAO Ming, WU Xindong, FU Yun. Scalable nearest neighbor sparse graph approximation by exploiting graph structure[J]. IEEE transactions on big data, 2016, 2(4):365-380.
Similar References:

Memo

-

Last Update: 2019-08-25

Copyright © CAAI Transactions on Intelligent Systems