[1]YU Bencheng,DING Shifei.Hybrid reconstruction method for missing data[J].CAAI Transactions on Intelligent Systems,2019,14(5):947-952.[doi:10.11992/tis.201807037]
Copy

Hybrid reconstruction method for missing data

References:
[1] KENNEDY J. Particle swarm optimization[M]//SAMMUT C, WEBB G I. Encyclopedia of Machine Learning. Boston, MA:Springer, 2010.
[2] EBERHART R C, SHI Y. Comparing inertia weights and constriction factors in particle swarm optimization[C]//Proceedings of the 2000 Congress on Evolutionary Computation. La Jolla, USA, 2000:84?88.
[3] 张庆科. 粒子群优化算法及差分进行算法研究[D]. 济南:山东大学, 2017. ZHANG Qingke. Research on the particle swarm optimization and differential evolution algorithms[D]. Ji’nan:Shandong University, 2017.
[4] 王永贵, 林琳, 刘宪国. 基于改进粒子群优化的文本聚类算法研究[J]. 计算机工程, 2014, 40(11):172-177 WANG Yonggui, LIN Lin, LIU Xianguo. Research on text clustering algorithm based on improved particle swarm optimization[J]. Computer engineering, 2014, 40(11):172-177
[5] 徐林. 粒子群优化算法的改进及其应用研究[J]. 西安文理学院学报(自然科学版), 2017, 20(4):51-54 XU Lin. Research on improvement and application of the particle swarm optimization algorithm[J]. Journal of Xi’an University (natural science edition), 2017, 20(4):51-54
[6] KRISHNA M, RAVI V. Particle swarm optimization and covariance matrix based data imputation[C]//Proceedings of 2013 IEEE International Conference on Computational Intelligence and Computing Research. Enathi, India, 2013:1-6.
[7] KASABOV N K, SONG Qun. DENFIS:dynamic evolving neural-fuzzy inference system and its application for time-series prediction[J]. IEEE transactions on fuzzy systems, 2002, 10(2):144-154.
[8] KASABOV N, SONG Qun, MA Tianmin. Fuzzy-neuro systems for local and personalized modelling[M]//NIKRAVESH M, KACPRZYK J, ZADEH L A. Forging New Frontiers:Fuzzy Pioneers Ⅱ. Berlin, Heidelberg:Springer, 2008:175?197.
[9] NISHANTH K J, RAVI V. A computational intelligence based online data imputation method:an application for banking[J]. Journal of information processing systems, 2013, 9(9):633-650.
[10] GAUTAM C, RAVI V. Evolving clustering based data imputation[C]//Proceedings of 2014 International Conference on Circuits, Power and Computing Technologies. Nagercoil, Tamil Nadu, India, 2014:1763-1769.
[11] HUANG Guangbin, ZHU Qinyu, SIEW C K. Extreme learning machine:a new learning scheme of feedforward neural networks[C]//Proceedings of 2004 IEEE International Joint Conference on Neural Networks. Budapest, Hungary, 2004:985-990.
[12] HUANG Guangbin, ZHU Qinyu, SIEW C K. Extreme learning machine:theory and applications[J]. Neurocomputing, 2006, 70(1/2/3):489-501.
[13] 任阳晖. 极限学习机算法及应用研究[D]. 沈阳:沈阳航空航天大学, 2017. REN Yanghui. Extreme learning machine alorithm and application[D]. Shenyang:Shenyang Aerospace University, 2017.
[14] GAUTAM C, RAVI V. Data imputation via evolutionary computation, clustering and a neural network[J]. Neurocomputing, 2015, 156:134-142.
[15] RAVI V, KRISHNA M. A new online data imputation method based on general regression auto associative neural network[J]. Neurocomputing, 2014, 138:106-113.
[16] 申小征. 基于维数约简的区域协方差矩阵及其在人脸识别中的应用[D]. 云南:云南财经大学, 2017.
[17] ANKAIAH N, RAVI V. A novel soft computing hybrid for data imputation[C]//Proceedings of the 7th International Conference on Data Mining. Las Vegas, Nevada, USA, 2011.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems