[1]HUANG Qin,QIAN Wenbin,WANG Yinglong,et al.Multi-label feature selection algorithm for cost-sensitive data[J].CAAI Transactions on Intelligent Systems,2019,14(5):929-938.[doi:10.11992/tis.201807027]
Copy

Multi-label feature selection algorithm for cost-sensitive data

References:
[1] ZHANG Minling, ZHOU Zhihua. A review on multi-label learning algorithms[J]. IEEE transactions on knowledge and data engineering, 2014, 26(8):1819-1837.
[2] TSOUMAKAS G, KATAKIS I, VLAHAVAS I. Random -Labelsets for multilabel classification[J]. IEEE transactions on knowledge and data engineering, 2011, 23(7):1079-1089.
[3] 郑伟, 王朝坤, 刘璋, 等. 一种基于随机游走模型的多标签分类算法[J]. 计算机学报, 2010, 33(8):1418-1426 ZHENG Wei, WANG Chaokun, LIU Zhang, et al. A multi-label classification algorithm based on random walk model[J]. Chinese journal of computers, 2010, 33(8):1418-1426
[4] 李宇峰, 黄圣君, 周志华. 一种基于正则化的半监督多标记学习方法[J]. 计算机研究与发展, 2012, 49(6):1272-1278 LI Yufeng, HUANG Shengjun, ZHOU Zhihua. Regularized semi-supervised multi-label learning[J]. Journal of computer research and development, 2012, 49(6):1272-1278
[5] PAWLAK Z. Rough sets[J]. International journal of computer and information sciences, 1982, 11(5):341-356.
[6] PAWLAK Z, SO-Winski R. Rough set approach to multi-attribute decision analysis[J]. European journal of operational research, 1994, 72(3):443-459.
[7] 刘清. Rough集及Rough推理[M]. 北京:科学出版社, 2001.
[8] SUN Liang, JI Shuiwang, YE Jieping. Multi-label dimensionality reduction[M]. Florida:CRC Press, 2013:20–22.
[9] ZHANG Yin, ZHOU Zhihua. Multi-label dimensionality reduction via dependence maximization[C]//Proceedings of the 23rd National Conference on Artificial Intelligence. Chicago, Illinois, 2008:1503?1505.
[10] YU Kai, YU Shipeng, TRESP V. Multi-label informed latent semantic indexing[C]//Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Salvador, Brazil, 2005:258?265.
[11] 段洁, 胡清华, 张灵均, 等. 基于邻域粗糙集的多标记分类特征选择算法[J]. 计算机研究与发展, 2015, 52(1):56-65 DUAN Jie, HU Qinghua, ZHANG Lingjun, et al. Feature selection for multi-label classification based on neighborhood rough sets[J]. Journal of computer research and development, 2015, 52(1):56-65
[12] 王晨曦, 林耀进, 唐莉, 等. 基于信息粒化的多标记特征选择算法[J]. 模式识别与人工智能, 2018, 31(2):123-131 WANG Chenxi, LIN Yaojin, TANG Li, et al. Multi-label feature selection based on information granulation[J]. Pattern recognition and artificial intelligence, 2018, 31(2):123-131
[13] LIN Yaojin, HU Qinghua, LIU Jinghua, et al. Multi-label feature selection based on neighborhood mutual information[J]. Applied soft computing, 2016, 38:244-256.
[14] 刘景华, 林梦雷, 王晨曦, 等. 基于局部子空间的多标记特征选择算法[J]. 模式识别与人工智能, 2016, 29(3):240-251 LIU Jinghua, LIN Menglei, WANG Chenxi, et al. Multi-label feature selection algorithm based on local subspace[J]. Pattern recognition and artificial intelligence, 2016, 29(3):240-251
[15] LEE J, LIM H, KIM D W. Approximating mutual information for multi-label feature selection[J]. Electronics letters, 2012, 48(15):929-930.
[16] 张振海, 李士宁, 李志刚, 等. 一类基于信息熵的多标签特征选择算法[J]. 计算机研究与发展, 2013, 50(6):1177-1184 ZHANG Zhenhai, LI Shining, LI Zhigang, et al. Multi-label feature selection algorithm based on information entropy[J]. Journal of computer research and development, 2013, 50(6):1177-1184
[17] YANG Qiang, WU Xindong. 10 challenging problems in data mining research[J]. International journal of information technology & decision making, 2006, 5(4):597-604.
[18] 徐章艳, 刘作鹏, 杨炳儒, 等. 一个复杂度为max(O(|C||U|),O(|C|2|U/C|))的快速属性约简算法[J]. 计算机学报, 2006, 29(3):391-399 XU Zhangyan, LIU Zuopeng, YANG Bingru, et al. A quick attribute reduction algorithm with complexity of max(O(|C||U|),O(|C|2|U/C|))[J]. Chinese journal of computers, 2006, 29(3):391-399
[19] WU Binglong, QIAN Wenbin, HUANG Qin, et al. Cost-Sensitive multi-label feature selection algorithm based on positive approximation[C]//Fuzzy Systems and Data Mining IV-Proceedings of FSDM 2018. Bangkok, Thailand, 2018:381?386.
[20] QIAN Yuhua, LIANG Jiye, PEDRYCZ W, et al. Positive approximation:an accelerator for attribute reduction in rough set theory[J]. Artificial intelligence, 2010, 174(9/10):597-618.
[21] WEI Wei, WU Xiaoying, LIANG Jiye, et al. Discernibility matrix based incremental attribute reduction for dynamic data[J]. Knowledge-based systems, 2018, 140:142-157.
[22] ELISSEEFF A, WESTON J. A kernel method for multi-labelled classification[C]//Proceedings of the 14th International Conference on Neural Information Processing Systems:Natural and Synthetic. Vancouver, Canada, 2001:681-687.
[23] TROHIDIS K, TSOUMAKAS G, KALLIRIS G, et al. Multi-label classification of music into emotions[C]//Proceedings of the 9th International Society for Music Information Retrieval Conference. Philadelphia, PA, 2008:325?330.
[24] BRIGGS F, HUANG Yonghong, RAICH R, et al. The 9th annual MLSP competition:new methods for acoustic classification of multiple simultaneous bird species in a noisy environment[C]//Proceedings of 2013 IEEE International Workshop on Machine Learning for Signal Processing. Southampton, UK, 2013:22?25.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems