[1]YU Jianjun,YAO Hongke,ZUO Guoyu,et al.Research on robot imitation learning method based on dynamical system[J].CAAI Transactions on Intelligent Systems,2019,14(5):1026-1034.[doi:10.11992/tis.201807018]
Copy

Research on robot imitation learning method based on dynamical system

References:
[1] SCHAAL S. Is imitation learning the route to humanoid robots?[J]. Trends in cognitive sciences, 1999, 3(6):233-242.
[2] 杨俊友, 马乐, 白殿春, 等. 机器人模仿学习的非接触观测控制图模型[J]. 机器人, 2014, 36(3):309-315 YANG Junyou, MA Le, BAI Dianchun, et al. Cybernetic-graphic model for robot imitation learning based on non-contact observation[J]. Robot, 2014, 36(3):309-315
[3] 曾华琳, 黄雨轩, 晁飞, 等. 书写机器人研究综述[J]. 智能系统学报, 2016, 11(1):15-26 ZENG Hualin, HUANG Yuxuan, CHAO Fei, et al. Survey of robotic calligraphy research[J]. CAAI transactions on intelligent systems, 2016, 11(1):15-26
[4] UGUR E, NAGAI Y, SAHIN E, et al. Staged development of robot skills:behavior formation, affordance learning and imitation with motionese[J]. IEEE transactions on autonomous mental development, 2015, 7(2):119-139.
[5] BOBOC R G, TOMA M I, PANFIR A N, et al. Learning new skills by a humanoid robot through imitation[C]//Proceedings of the 2013 IEEE 14th International Symposium on Computational Intelligence and Informatics. Budapest, Hungary, 2013:515-519.
[6] 于建均, 门玉森, 阮晓钢, 等. 基于Kinect的Nao机器人动作模仿系统的研究与实现[J]. 智能系统学报, 2016, 11(2):180-187 YU Jianjun, MEN Yusen, RUAN Xiaogang, et al. CAAI transactions on intelligent systems[J]. CAAI transactions on intelligent systems, 2016, 11(2):180-187
[7] BILLARD A, CALINON S, DILLMANN R, et al. Robot programming by demonstration[M]//SICILIANO B, KHATIB O. Springer Handbook of Robotics. Berlin, Heidelberg:Springer, 2008:1371?1394.
[8] ATKESON C G, SCHAAL S. Learning tasks from a single demonstration[C]//Proceedings of International Conference on Robotics and Automation. Albuquerque, NM, USA, 1997:1706?1712.
[9] MAAREF M, REZAZADEH A, SHAMAEI K, et al. A gaussian mixture framework for co-operative rehabilitation therapy in assistive impedance-based tasks[J]. IEEE journal of selected topics in signal processing, 2016, 10(5):904-913.
[10] KULI? D, TAKANO W, NAKAMURA Y. Incremental learning, clustering and hierarchy formation of whole body motion patterns using adaptive hidden markov chains[J]. The international journal of robotics research, 2008, 27(7):761-784.
[11] ANTONELO E A, SCHRAUWEN B. Supervised learning of internal models for autonomous goal-oriented robot navigation using reservoir computing[C]//Proceedings of 2010 IEEE International Conference on Robotics and Automation. Anchorage, AK, USA, 2010:2959-2964.
[12] CALINON S, BILLARD A. Incremental learning of gestures by imitation in a humanoid robot[C]//Proceedings of the ACM/IEEE international conference on Human-robot interaction. Arlington, VA, USA, 2007:255-262.
[13] HERSCH M, GUENTER F, CALINON S, et al. Dynamical system modulation for robot learning via kinesthetic demonstrations[J]. IEEE transactions on robotics, 2008, 24(6):1463-1467.
[14] SCHAAL S, ATKESON C, VIJAYAKUMAR S. Scalable locally weighted statistical techniques for real time robot learning[J]. Applied intelligence-special issue on scalable robotic applications of neural networks, 2002, 17(1):49-60.
[15] PETERNEL L, OZTOP E, BABI? J. A shared control method for online human-in-the-loop robot learning based on locally weighted regression[C]//Proceedings of 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems. Daejeon, South Korea, 2016:3900-3906.
[16] MCCORMICK J, VINCS K, NAHAVANDI S, et al. Teaching a digital performing agent:Artificial neural network and hidden markov model for recognising and performing dance movement[C]//Proceedings of the 2014 International Workshop on Movement and Computing. Paris, France, 2014:70.
[17] 于建均, 吴鹏申, 左国玉, 等. 基于RNN的机械臂任务模仿系统[J]. 北京工业大学学报, 2018, 44(11):1401-1408 YU Jianjun, WU Pengshen, ZUO Guoyu, et al. Robot arm task imitation system based on RNN[J]. Journal of Beijing University of Technology, 2018, 44(11):1401-1408
[18] 于建均, 门玉森, 阮晓钢, 等. 在书写任务中的基于轨迹匹配的模仿学习[J]. 北京工业大学学报, 2016, 42(8):1144-1152 YU Jianjun, MEN Yusen, RUAN Xiaogang, et al. Imitation learning based on trajectory matching in the writing task[J]. Journal of Beijing University of Technology, 2016, 42(8):1144-1152
[19] IJSPEERT A J, NAKANISHI J, HOFFMANN H, et al. Dynamical movement primitives:learning attractor models for motor behaviors[J]. Neural computation, 2013, 25(2):328-373.
[20] PARASCHOS A, RUECKERT E, PETERS J, et al. Model-free probabilistic movement primitives for physical interaction[C]//Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany, 2015:2860-2866.
[21] KOCH K H, CLEVER D, MOMBAUR K, et al. Learning movement primitives from optimal and dynamically feasible trajectories for humanoid walking[C]//Proceedings of 2015 IEEE-RAS 15th International Conference on Humanoid Robots. Seoul, South Korea, 2015:866-873.
[22] KOBER J, GIENGER M, STEIL J J. Learning movement primitives for force interaction tasks[C]//Proceedings of 2015 IEEE International Conference on Robotics and Automation. Seattle, USA, 2015:3192-3199.
[23] WIGGINS S. Introduction to applied nonlinear dynamical systems and chaos[M]. 2nd ed. New York:Springer Science & Business Media, 2003.
[24] SEEGER M. Gaussian processes for machine learning[J]. International journal of neural systems, 2004, 14(2):69-106.
[25] KHANSARI-ZADEH S M, BILLARD A. BM:an iterative algorithm to learn stable non-linear dynamical systems with gaussian mixture models[C]//Proceedings of 2010 IEEE International Conference on Robotics and Automation. Anchorage, USA, 2010:2381-2388.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems