[1]YANG Jianping,LIU Minghua,LYU Jingxiang,et al.A wearable system to recognize and awaken low-arousal state[J].CAAI Transactions on Intelligent Systems,2019,14(4):787-792.[doi:10.11992/tis.201806047]
Copy

A wearable system to recognize and awaken low-arousal state

References:
[1] 程文东, 付锐, 袁伟, 等. 驾驶人疲劳监测预警技术研究与应用综述[J]. 中国安全科学学报, 2013, 23(1):155-160 CHENG Wendong, FU Rui, YUAN Wei, et al. Overview of researches on driver fatigue monitoring and prewarning technologies and their applications[J]. China safety science journal, 2013, 23(1):155-160
[2] 祝宇虹, 刘海平, 查富生, 等. 基于呼吸信号的驾驶员疲劳状态实时监测系统[J]. 江南大学学报(自然科学版), 2014, 13(1):55-59 ZHU Yuhong, LIU Haiping, ZHA Fusheng, et al. Real-time monitoring system for driver’s fatigue states based on respiratory signal[J]. Journal of Jiangnan University (natural science edition), 2014, 13(1):55-59
[3] 张淑清, 上官寒露, 袁计委, 等. 基于内禀模态能量比呼吸信号特征参数提取方法[J]. 仪器仪表学报, 2010, 31(8):1706-1711 ZHANG Shuqing, SHANGGUAN Hanlu, YUAN Jiwei, et al. Study on the extraction method of characteristic parameters of respiration signals based on intrinsic mode energy ratio[J]. Chinese journal of scientific instrument, 2010, 31(8):1706-1711
[4] 杨英, 盛敬, 杨佳, 等. 基于神经网络的驾驶员觉醒水平双目标监测法[J]. 东北大学学报(自然科学版), 2007, 28(3):418-421 YANG Ying, SHENG Jing, YANG Jia, et al. Double-objective detection based on neural network for driver’s alert level[J]. Journal of Northeastern University (natural science), 2007, 28(3):418-421
[5] 高春芳, 吕宝粮, 马家昕. 一种用小波包变换提取眼电信号警觉度特征的方法[J]. 中国生物医学工程学报, 2012, 31(5):641-648 GAO Chunfang, LYU Baoliang, MA Jiaxin. A new method of extracting vigilant feature from electrooculography using wavelet packet transform[J]. Chinese journal of biomedical engineering, 2012, 31(5):641-648
[6] LEE B G, PARK J H, PU C C, et al. Smartwatch-based driver vigilance indicator with kernel-fuzzy-C-means-wavelet method[J]. IEEE sensors journal, 2016, 16(1):242-253.
[7] BALASUBRAMANIAN V, ADALARASU K. EMG-based analysis of change in muscle activity during simulated driving[J]. Journal of bodywork and movement therapies, 2007, 11(2):151-158.
[8] 齐晴, 高举, 王敏, 等. 融合视频与生物电信息的驾驶员状态监测与预警系统[J]. 工业控制计算机, 2016, 29(12):71-73 QI Qing, GAO Ju, WANG Min, et al. Driving state monitoring and warning system by video and bio-electricity information[J]. Industrial control computer, 2016, 29(12):71-73
[9] SUBASI A. Automatic recognition of alertness level from EEG by using neural network and wavelet coefficients[J]. Expert systems with applications, 2005, 28(4):701-711.
[10] RESALAT S N, SABA V. A practical method for driver sleepiness detection by processing the EEG signals stimulated with external flickering light[J]. Signal, image and video processing, 2015, 9(8):1751-1757.
[11] BAKÓ L, GYÖRGY-MÓZES E, BRASSAI S T, et al. Neural network parallelization on FPGA platform for EEG signal classification[C]//Proceedings of the 6th Edition of the Interdisciplinarity in Engineering International Conference. Romania, 2012.
[12] CORTES C, VAPNIK V. Support-vector networks[J]. Machine learning, 1995, 20(3):273-297.
[13] AN Senjian, LIU Wanquan, VENKATESH S. Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression[J]. Pattern recognition, 2007, 40(8):2154-2162.
[14] 刘佳兴, 王炜. 基于多参数融合的疲劳驾驶监测及预警系统[J]. 计算机仿真, 2013, 30(5):171-175, 207 LIU Jiaxing, WANG Wei. Driver fatigue monitoring and warning system based on multi-parameter fusion[J]. Computer simulation, 2013, 30(5):171-175, 207
Similar References:

Memo

-

Last Update: 2019-08-25

Copyright © CAAI Transactions on Intelligent Systems