[1]WU Xiru,XUE Ganggang.CNN-based image clustering algorithm for fast recognition of traffic signs[J].CAAI Transactions on Intelligent Systems,2019,14(4):670-678.[doi:10.11992/tis.201806026]
Copy

CNN-based image clustering algorithm for fast recognition of traffic signs

References:
[1] SAADNA Y, BEHLOUL A. An overview of traffic sign detection and classification methods[J]. International journal of multimedia information retrieval, 2017, 6(3):193-210.
[2] BERKAYA S K, GUNDUZ H, OZSEN O, et al. On circular traffic sign detection and recognition[J]. Expert systems with applications, 2016, 48:67-75.
[3] HOFERLIN B, ZIMMERMANN K. Towards reliable traffic sign recognition[C]//2009 IEEE Intelligent Vehicles Symposium. Xi’an, China, 2009:324-329.
[4] 张卡, 盛业华, 叶春, 等. 基于中心投影形状特征的车载移动测量系统交通标志自动识别[J]. 仪器仪表学报, 2010, 31(9):2101-2108 ZHANG Ka, SHENG Yehua, YE Chun, et al. Automatic recognition of road traffic sign based on central projected shape feature for vehicle-borne mobile mapping system[J]. Chinese journal of scientific instrument, 2010, 31(9):2101-2108
[5] LU Ke, DING Zhengming, GE S. Sparse-representation-based graph embedding for traffic sign recognition[J]. IEEE transactions on intelligent transportation systems, 2012, 13(4):1515-1524.
[6] 宋文杰, 付梦印, 杨毅. 一种面向无人驾驶汽车的高效交通标志识别方法[J]. 机器人, 2015, 37(1):102-111 SONG Wenjie, FU Mengyin, YANG Yi. An efficient traffic signs recognition method for autonomous vehicle[J]. Robot, 2015, 37(1):102-111
[7] HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural computation, 2006, 18(7):1527-1554.
[8] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507.
[9] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436-444.
[10] 刘方园, 王水花, 张煜东. 深度置信网络模型及应用研究综述[J]. 计算机工程与应用, 2018, 54(1):11-18 LIU Fangyuan, WANG Shuihua, ZHANG Yudong. Survey on deep belief network model and its applications[J]. Computer engineering and applications, 2018, 54(1):11-18
[11] GOLOVKO V A. Deep learning:an overview and main paradigms[J]. Optical memory and neural networks, 2017, 26(1):1-17.
[12] 马志强, 李图雅, 杨双涛, 等. 基于深度神经网络的蒙古语声学模型建模研究[J]. 智能系统学报, 2018, 13(3):486-492 MA Zhiqiang, LI Tuya, YANG Shuangtao, et al. Mongolian acoustic modeling based on deep neural network[J]. CAAI transactions on intelligent systems, 2018, 13(3):486-492
[13] CIRE?AN D, MEIER U, MASCI J, et al. Multi-column deep neural network for traffic sign classification[J]. Neural networks, 2012, 32:333-338.
[14] 孙伟, 杜宏吉, 张小瑞, 等. 基于CNN多层特征和ELM的交通标志识别[J]. 电子科技大学学报, 2018, 47(3):343-349 SUN Wei, DU Hongji, ZHANG Xiaorui, et al. Traffic sign recognition method based on multi-layer feature CNN and extreme learning machine[J]. Journal of University of Electronic Science and Technology of China, 2018, 47(3):343-349
[15] CHAWLA N V. Data mining for imbalanced datasets:An overview[M]//MAIMON O, ROKACH L. Data Mining and Knowledge Discovery Handbook. Boston, MA:Springer, 2005:853-867.
[16] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.
[17] MURTAGH F. A survey of recent advances in hierarchical clustering algorithms[J]. The computer journal, 1983, 26(4):354-359.
[18] PAL N R. A primer on cluster analysis:4 basic methods that (usually) work[book review] [J]. IEEE computational intelligence magazine, 2017, 12(4):98-100.
[19] ZAKLOUTA F, STANCIULESCU B. Real-time traffic-sign recognition using tree classifiers[J]. IEEE transactions on intelligent transportation systems, 2012, 13(4):1507-1514.
[20] SERMANET P, LECUN Y. Traffic sign recognition with multi-scale convolutional networks[C]//2011 International Joint Conference on Neural Networks. San Jose, CA, USA, 2011:2809-2813.
Similar References:

Memo

-

Last Update: 2019-08-25

Copyright © CAAI Transactions on Intelligent Systems