[1]ZHANG Bencai,WANG Zhihai,SUN Yange.An ensemble classification algorithm based on diversity and accuracy weighting for data streams[J].CAAI Transactions on Intelligent Systems,2019,14(1):179-185.[doi:10.11992/tis.201806021]
Copy

An ensemble classification algorithm based on diversity and accuracy weighting for data streams

References:
[1] GOMES H M, BARDDAL J P, ENEMBRECK F, et al. A survey on ensemble learning for data stream classification[J]. ACM computing surveys, 2017, 50(2):23.
[2] BRZEZINSKI D, STEFANOWSKI J. Reacting to different types of concept drift:the Accuracy Updated Ensemble algorithm[J]. IEEE transactions on neural networks and learning systems, 2014, 25(1):81-94.
[3] PIETRUCZUK L, RUTKOWSKI L, JAWORSKI M, et al. How to adjust an ensemble size in stream data mining[J]. Information sciences, 2017, 381:46-54.
[4] 孙宇. 针对含有概念漂移问题的增量学习算法研究[D]. 合肥:中国科学技术大学, 2017. SUN Yu. Incremental learning algorithms with concept drift adaptation[D]. Hefei:University of Science and Technology of China, 2017.
[5] SUN Yu, TANG Ke, ZHU Zexuan, et al. Concept drift adaptation by exploiting historical knowledge[J]. IEEE transactions on neural networks and learning systems, 2018, 29(10):4822-4832.
[6] VAN RIJN J N, HOLMES G, PFAHRINGER B, et al. Having a Blast:meta-learning and heterogeneous ensembles for data streams[C]//Proceedings of the 2015 IEEE International Conference on Data Mining. Atlantic City, USA, 2015:1003-1008.
[7] CHANDRA A, CHEN Huanhuan, YAO Xin. Trade-off between diversity and accuracy in ensemble generation[M]//JIN Yaochu. Multi-Objective Machine Learning. Berlin Heidelberg:Springer, 2006:429-464.
[8] LI Ye, XU Li, WANG Yagang, et al. A new diversity measure for classifier fusion[M]//WANG F L, LEI Jingsheng, LAU R W H, et al. Multimedia and Signal Processing. Berlin Heidelberg:Springer, 2012:396-403.
[9] 孙博, 王建东, 陈海燕, 等. 集成学习中的多样性度量[J]. 控制与决策, 2014, 29(3):385-395 SUN Bo, WANG Jiandong, CHEN Haiyan, et al. Diversity measures in ensemble learning[J]. Control and decision, 2014, 29(3):385-395
[10] BIFET A, HOLMES G, KIRKBY R, et al. MOA:massive online analysis[J]. Journal of machine learning research, 2010, 11(5):1601-1604.
[11] STREET W N, KIM Y S. A streaming ensemble algorithm (SEA) for large-scale classification[C]//Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, USA, 2001:377-382.
[12] GOMES H M, BIFET A, READ J, et al. Adaptive random forests for evolving data stream classification[J]. Machine learning, 2017, 106(9/10):1469-1495.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems