[1]LING Tong,YANG Wanqi,YANG Ming.Prostate segmentation in CT images with multimodal U-net[J].CAAI Transactions on Intelligent Systems,2018,13(6):981-988.[doi:10.11992/tis.201806012]
Copy

Prostate segmentation in CT images with multimodal U-net

References:
[1] 黄高贤. 前列腺癌中CT、MR诊断的研究进展[J]. 吉林医学, 2010, 31(4):529-531 HUANG Gaoxian. Progress in diagnosis of CT and MR in prostate cancer[J]. Jilin medical journal, 2010, 31(4):529-531
[2] 陈识, 宋曼. MRI与CT诊断不同病理分期前列腺癌患者的准确率比较观察[J]. 中国老年保健医学, 2016, 14(6):85-87 CHEN Shi, SONG Man. MRI and CT diagnosis of different pathological stages of prostate cancer patients’ accuracy rate comparison[J]. Chinese journal of geriatric care, 2016, 14(6):85-87
[3] LIAO Shu, SHEN Dinggang. A feature-based learning framework for accurate prostate localization in CT images[J]. IEEE transactions on image processing, 2012, 21(8):3546-3559.
[4] CHEN Siqi, LOVELOCK D M, RADKE R J. Segmenting the prostate and rectum in CT imagery using anatomical constraints[J]. Medical image analysis, 2011, 15(1):1-11.
[5] GAO Yaozong, LIAO Shu, SHEN Dinggang. Prostate segmentation by sparse representation based classification[J]. Medical physics, 2012, 39(10):6372-6387.
[6] SHI Jun, ZHENG Xiao, LI Yan, et al. Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of Alzheimer’s disease[J]. IEEE journal of biomedical and health informatics, 2018, 22(1):173-183.
[7] CAI Yunliang, LANDIS M, LAIDLEY D T, et al. Multi-modal vertebrae recognition using transformed deep convolution network[J]. Computerized medical imaging and graphics, 2016, 51:11-19.
[8] HINTON G E, OSINDERO S, THE Y W. A fast learning algorithm for deep belief nets[J]. Neural computation, 2006, 18(7):1527-1554.
[9] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada, 2012:1097-1105.
[10] KOREZ R, LIKAR B, PERNU? F, et al. Model-based segmentation of vertebral bodies from MR images with 3D CNNs[C]//Proceedings of the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention. Athens, Greece, 2016:433-441.
[11] XIE Yuanpu, ZHANG Zizhao, SAPKOTA M, et al. Spatial clockwork recurrent neural network for muscle perimysium segmentation[C]//Proceedings of the 19th International Conference on Medical Image Computing and Computer-assisted Intervention. Athens, Greece, 2016:185-193.
[12] BROSCH T, TANG L Y W, YOO Y, et al. Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation[J]. IEEE transactions on medical imaging, 2016, 35(5):1229-1239.
[13] YOSINSKI J, CLUNE J, BENGIO Y, et al. How transferable are features in deep neural networks?[J]. arXiv:1411.1792, 2014.
[14] SHI Yinghuan, YANG Wanqi, GAO Yang, et al. Does manual delineation only provide the side information in CT prostate segmentation?[C]//Proceedings of the 20th International Conference on Medical Image Computing and Computer-Assisted Intervention. Quebec City, Canada, 2017:692-700.
[15] KOUSHIK J. Understanding convolutional neural networks[J]. arXiv:1605.09081, 2016.
[16] XU Bing, WANG Naiyan, CHEN Tianqi, et al. Empirical evaluation of rectified activations in convolutional network[J]. arXiv:1505:00853, 2015.
[17] ZEILER M D, TAYLOR G W, FERGUS R. Adaptive deconvolutional networks for mid and high level feature learning[C]//Proceedings of the 2011 International Conference on Computer Vision. Barcelona, Spain, 2011:2018-2025.
[18] RONNEBERGER O, FISCHER P, BROX T. U-Net:convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich, Germany, 2015:234-241.
[19] IOFFE S, SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[J]. arXiv:1502.03167, 2015.
[20] LIN Min, CHEN Qiang, YAN Shuicheng. Network in network[J]. arXiv:1312.4400, 2013.
[21] FRANCE N. MICCAI grand challenge:prostate MR image segmentation 2012[EB/OL].[2012-10-01]. https://promise12.grand-challenge.org/home/.
[22] JIA Yangqing, SHELHAMER E, DONAHUE J, et al. Caffe:convolutional architecture for fast feature embedding[C]//Proceedings of the 22nd ACM International Conference on Multimedia. Florida, USA, 2014:675-678.
[23] KETKAR N. Stochastic gradient descent[M]//KETKAR N. Deep Learning with Python. Berkeley:Apress, 2017.
[24] TAHA A A, HANBURY A. Metrics for evaluating 3D medical image segmentation:analysis, selection, and tool[J]. BMC medical imaging, 2015, 15:29.
Similar References:

Memo

-

Last Update: 2018-12-25

Copyright © CAAI Transactions on Intelligent Systems