[1]WANG Yibin,PEI Gensheng,CHENG Yusheng.Multi-label learning algorithm of an elastic net kernel extreme learning machine[J].CAAI Transactions on Intelligent Systems,2019,14(4):831-842.[doi:10.11992/tis.201806005]
Copy

Multi-label learning algorithm of an elastic net kernel extreme learning machine

References:
[1] ZHANG Minling, ZHOU Zhihua. A review on multi-label learning algorithms[J]. IEEE transactions on knowledge and data engineering, 2014, 26(8):1819-1837.
[2] SCHAPIRE R E, SINGER Y. BoosTexter:a boosting-based system for text categorization[J]. Machine learning, 2000, 39(2/3):135-168.
[3] AGRAWAL S, AGRAWAL J, KAUR S, et al. A comparative study of fuzzy PSO and fuzzy SVD-based RBF neural network for multi-label classification[J]. Neural computing and applications, 2018, 29(1):245-256.
[4] BOUTELL M R, LUO Jiebo, SHEN Xipeng, et al. Learning multi-label scene classification[J]. Pattern recognition, 2004, 37(9):1757-1771.
[5] GUAN Renchu, WANG Xu, YANG M Q, et al. Multi-label deep learning for gene function annotation in cancer pathways[J]. Scientific reports, 2018, 8(1):267.
[6] TOMAR D, AGARWAL S. Multi-label classifier for emotion recognition from music[C]//Proceedings of the 3rd International Conference on Advanced Computing, Networking and Informatics. New Delhi, India:Springer, 2016:111-123.
[7] READ J, PFAHRINGER B, HOLMES G. Multi-label classification using ensembles of pruned sets[C]//Proceedings of the Eighth IEEE International Conference on Data Mining. Pisa:IEEE, 2008:995-1000.
[8] READ J. A pruned problem transformation method for multi-label classification[C]//Proceedings of 2008 New Zealand Computer Science Research Student Conference. Christchurch, New Zealand:NZCSRS, 2008:143-150.
[9] TSOUMAKAS G, VLAHAVAS I. Random k-labelsets:an ensemble method for multilabel classification[C]//Proceedings of the 18th European Conference on Machine Learning. Warsaw, Poland:Springer, 2007:406-417.
[10] ZHANG Minling, ZHOU Zhihua. ML-KNN:a lazy learning approach to multi-label learning[J]. Pattern recognition, 2007, 40(7):2038-2048.
[11] ZHANG Minling, PE?A J M, ROBLES V. Feature selection for multi-label naive Bayes classification[J]. Information sciences, 2009, 179(19):3218-3229.
[12] ELISSEEFF A, WESTON J. A kernel method for multi-labelled classification[C]//Proceedings of the 14th International Conference on Neural Information Processing Systems:Natural and Synthetic. Vancouver, Canada:MIT Press, 2001:681-687.
[13] ZHANG Minling. ML-RBF:RBF neural networks for multi-label learning[J]. Neural processing letters, 2009, 29(2):61-74.
[14] HUANG Guangbin, ZHU Qinyu, SIEW C K. Extreme learning machine:theory and applications[J]. Neurocomputing, 2006, 70(1/2/3):489-501.
[15] 邓万宇, 郑庆华, 陈琳, 等. 神经网络极速学习方法研究[J]. 计算机学报, 2010, 33(2):279-287 DENG Wanyu, ZHENG Qinghua, CHEN Lin, et al. Research on extreme learning of neural networks[J]. Chinese journal of computers, 2010, 33(2):279-287
[16] MICHE Y, VAN HEESWIJK M, BAS P, et al. TROP-ELM:a double-regularized ELM using LARS and Tikhonov regularization[J]. Neurocomputing, 2011, 74(16):2413-2421.
[17] HUANG Guangbin, ZHOU Hongming, DING Xiaojian, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE transactions on systems, man, and cybernetics, part B (cybernetics), 2012, 42(2):513-529.
[18] ER M J, VENKATESAN R, WANG Ning. A high speed multi-label classifier based on extreme learning machines[C]//Proceedings of ELM-2015 Volume 2:Theory, Algorithms and Applications. Cham:Springer International Publishing, 2016.
[19] SUN Xia, XU Jingting, JIANG Changmeng, et al. Extreme learning machine for multi-label classification[J]. Entropy, 2016, 18(6):225.
[20] ZHANG Nan, DING Shifei, ZHANG Jian. Multi layer ELM-RBF for multi-label learning[J]. Applied soft computing, 2016, 43:535-545.
[21] LUO Fangfang, GUO Wenzhong, YU Yuanlong, et al. A multi-label classification algorithm based on kernel extreme learning machine[J]. Neurocomputing, 2017, 260:313-320.
[22] HAN Yahong, WU Fei, ZHUANG Yueting, et al. Multi-label transfer learning with sparse representation[J]. IEEE transactions on circuits and systems for video technology, 2010, 20(8):1110-1121.
[23] ZOU Hui, HASTIE T. Regularization and variable selection via the elastic net[J]. Journal of the royal statistical society:series B (statistical methodology), 2005, 67(2):301-320.
[24] FRIEDMAN J, HASTIE T, TIBSHIRANI R. Regularization paths for generalized linear models via coordinate descent[J]. Journal of statistical software, 2010, 33(1):1-22.
[25] ZHOU Zhihua, ZHANG Minling. Multi-label learning[M]//SAMMUT C, WEBB G I. Encyclopedia of Machine Learning and Data Mining. Boston, MA:Springer, 2017:875-881
[26] WRIGHT S J. Coordinate descent algorithms[J]. Mathematical programming, 2015, 151(1):3-34.
[27] DONOHO D L. De-noising by soft-thresholding[J]. IEEE transactions on information theory, 1995, 41(3):613-627.
[28] FRIEDMAN J, HASTIE T, H?FLING H, et al. Pathwise coordinate optimization[J]. The annals of applied statistics, 2007, 1(2):302-332.
[29] DEMSAR J. Statistical comparisons of classifiers over multiple data sets[J]. Journal of machine learning research, 2006, 7:1-30.
Similar References:

Memo

-

Last Update: 2019-08-25

Copyright © CAAI Transactions on Intelligent Systems