[1]XU Jiucheng,WANG Nan,WANG Yuyao,et al.Non-convex weighted-Lp-norm sparse-error constraint for image denoising[J].CAAI Transactions on Intelligent Systems,2019,14(3):500-507.[doi:10.11992/tis.201804057]
Copy

Non-convex weighted-Lp-norm sparse-error constraint for image denoising

References:
[1] CHAMBOLLE A. An algorithm for total variation minimization and applications[J]. Journal of mathematical imaging and vision, 2004, 20:89-97.
[2] 邓承志. 图像稀疏表示理论及其应用研究[D]. 武汉:华中科技大学, 2008. DENG Chengzhi. Research on image sparse representation theory and its applications[D]. Wuhan:Huazhong University of Science and Technology, 2008.
[3] 练秋生, 张伟. 基于图像块分类稀疏表示的超分辨率重构算法[J]. 电子学报, 2012, 40(5):920-925 LIAN Qiusheng, ZHANG Wei. Image super-resolution algorithms based on sparse representation of classified image patches[J]. Acta electronica sinica, 2012, 40(5):920-925
[4] DAI Tao, XU Zhiya, LIANG Haoyi, et al. A generic denoising framework via guided principal component analysis[J]. Journal of visual communication and image representation, 2017, 48:340-352.
[5] 郝红侠, 刘芳, 焦李成, 等. 采用结构自适应窗的非局部均值图像去噪算法[J]. 西安交通大学学报, 2013, 47(12):71-76 HAO Hongxia, LIU Fang, JIAO Licheng, et al. A non-local means algorithm for image denoising using structure adaptive window[J]. Journal of Xi’an jiaotong university, 2013, 47(12):71-76
[6] ZUO Chenglin, JOVANOV L, GOOSSENS B, et al. Image denoising using quadtree-based nonlocal means with locally adaptive principal component analysis[J]. IEEE signal processing letters, 2016, 23(4):434-438.
[7] ZHANG Kai, ZUO Wangmeng, CHEN Yunjin, et al. Beyond a gaussian denoiser:residual learning of deep cnn for image denoising[J]. IEEE transactions on image processing, 2017, 26(7):3142-3155.
[8] 陈轶鸣, 夏景明, 陈轶才, 等. 结合稀疏表示与神经网络的医学图像融合[J]. 河南科技大学学报(自然科学版), 2018, 39(2):40-47 CHEN Yiming, XIA Jingming, CHEN Yicai, et al. Medical image fusion combining sparse representation and neural network[J]. Journal of Henan University of Science and Technology (natural science), 2018, 39(2):40-47
[9] 解凯, 张芬. 基于过完备表示的图像去噪算法[J]. 电子学报, 2013, 41(10):1911-1916 XIE Kai, ZHANG Fen. Overcomplete representation base image denoising algorithm[J]. Acta electronica sinica, 2013, 41(10):1911-1916
[10] BUDIANTO, LUN D P. Robust fringe projection profilometry via sparse representation[J]. IEEE transactions on image processing, 2016, 25(4):1726-1739.
[11] ZHANG Jian, ZHAO Debin, GAO Wen. Group-based sparse representation for image restoration[J]. IEEE transactions on image processing, 2014, 23(8):3336-3351.
[12] 占美全, 邓志良. 基于L1范数的总变分正则化超分辨率图像重建[J]. 科学技术与工程, 2010, 10(28):6903-6906 ZHAN Meiquan, DENG Zhiliang. L1 norm of total variation regularization based super resolution reconstruction for images[J]. Science technology and engineering, 2010, 10(28):6903-6906
[13] 杨平先, 陈明举. 一种基于L1范数的非局部变分图像复原模型[J]. 液晶与显示, 2017, 32(8):635-641 YANG Pingxian, CHEN Mingju. A nonlocal total variation based on L1 norm for image recovery[J]. Chinese journal of liquid crystals and displays, 2017, 32(8):635-641
[14] 张艳艳, 陈苏婷, 葛俊祥, 等. 自适应非凸稀疏正则化下自适应光学系统加性噪声的去除[J]. 物理学报, 2017, 66(12):368-375 ZHANG Yanyan, CHEN Suting, GE Junxiang, et al. Removal of additive noise in adaptive optics system based on adaptive nonconvex sparse regularization[J]. Acta physica sinica, 2017, 66(12):368-375
[15] ZHA Zhiyuan, LIU Xin, HUANG Xiaohua, et al. Analyzing the group sparsity based on the rank minimization methods[C]//Proceedings of IEEE International Conference on Multimedia and Expo. Hong Kong, China, 2017:883-888.
[16] ZUO Wangmeng, MENG Deyu, ZHANG Lei, et al. A generalized iterated shrinkage algorithm for non-convex sparse coding[C]//Proceedings of IEEE International Conference on Computer Vision. Sydney, NSW, Australia, 2013:217-224.
[17] ZHANG Xiaoqun, BURGER M, BRESSON X, et al. Bregmanized nonlocal regularization for deconvolution and sparse reconstruction[J]. SIAM journal on imaging sciences, 2010, 3(3):253-276.
[18] DONG Weisheng, ZHANG Lei, SHI Guangming, et al. Nonlocally centralized sparse representation for image restoration[J]. IEEE transactions on image processing, 2013, 22(4):1620-1630.
[19] GU Shuhang, XIE Qi, MENG Deyu, et al. Weighted nuclear norm minimization and its applications to low level vision[J]. International journal of computer vision, 2017, 121(2):183-208.
[20] LUO Enming, CHAN S H, NGUYEN T Q. Adaptive image denoising by mixture adaptation[J]. IEEE transactions on image processing, 2016, 25(10):4489-4503.
[21] LIU Hangfan, XIONG Ruiqin, ZHANG Jian, et al. Image denoising via adaptive soft-thresholding based on non-local samples[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA, 2015:484-492.
[22] PAPYAN V, ELAD M. Multi-scale patch-based image restoration[J]. IEEE transactions on image processing, 2016, 25(1):249-261.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems