[1]CHEN Xingkai,LU Yu,WANG Kai,et al.Optimizing network controllability based on eigenvalue 0/-1[J].CAAI Transactions on Intelligent Systems,2019,14(3):589-596.[doi:10.11992/tis.201801007]
Copy

Optimizing network controllability based on eigenvalue 0/-1

References:
[1] LIU Yangyu, SLOTINE J J, BARABáSI A L. Controllability of complex networks[J]. Nature, 2011, 473(7346):167-173.
[2] YUAN Zhengzhong, ZHAO Chen, DI Zengru, et al. Exact controllability of complex networks[J]. Nature communications, 2013, 4:2447.
[3] 侯绿林, 老松杨, 肖延东, 等. 复杂网络可控性研究现状综述[J]. 物理学报, 2015, 64(18):188901 HOU Lülin, LAO Songyang, XIAO Yandong, et al. Recent progress in controllability of complex network[J]. Acta physica sinica, 2015, 64(18):188901
[4] LIN C T. Structural controllability[J]. IEEE transactions on automatic control, 1974, 19(3):201-208.
[5] PóSFAI M, LIU Yangyu, SLOTINE J J, et al. Effect of correlations on network controllability[J]. Scientific reports, 2013, 3:1067.
[6] 徐明, 徐传云, 曹克非. 度相关性对无向网络可控性的影响[J]. 物理学报, 2017, 66(2):028901 XU Ming, XU Chuanyun, CAO Kefei. Effect of degree correlations on controllability of undirected networks[J]. Acta physica sinica, 2017, 66(2):028901
[7] WANG Wenxu, NI Xuan, LAI Yingcheng, et al. Optimizing controllability of complex networks by minimum structural perturbations[J]. Physical review E, 2012, 85(2):026115.
[8] XIAO Yandong, LAO Songyang, HOU Lülin, et al. Edge orientation for optimizing controllability of complex networks[J]. Physical review. E, statistical, nonlinear, and soft matter physics, 2014, 90(4):042804.
[9] XU Jiuqiang, WANG Jinfa, ZHAO Hai, et al. Improving controllability of complex networks by rewiring links regularly[C]//Proceedings of the 26th Chinese Control and Decision Conference. Changsha, China, 2014:642-645.
[10] HOU Lülin, LAO Songyang, SMALL M, et al. Enhancing complex network controllability by minimum link direction reversal[J]. Physics letters A, 2015, 379(20/21):1321-1325.
[11] LI Jingwen, YUAN Zhengzhong, FAN Ying, et al. Controllability of fractal networks:an analytical approach[J]. Europhysics letters, 2014, 105(5):58001.
[12] XU Ming, XU Chuanyun, WANG Huan, et al. Analytical controllability of deterministic scale-free networks and Cayley trees[J]. European physical journal B, 2015, 88(7):168.
[13] WU Lanping, ZHOU Jikun, YUAN Zhengzhong, et al. Exact controllability of a star-type network[C]//Proceedings of the 27th Chinese Control and Decision Conference. Qingdao, China, 2015:5187-5191.
[14] 晁永翠, 纪志坚, 王耀威, 等. 复杂网络在路形拓扑结构下可控的充要条件[J]. 智能系统学报, 2015, 10(4):577-582 CHAO Yongcui, JI Zhijian, WANG Yaowei, et al. Necessary and sufficient conditions for the controllability of complex networks with path topology[J]. CAAI transactions on intelligent systems, 2015, 10(4):577-582
[15] 胡寿松. 自动控制原理[M]. 6版. 北京:科学出版社, 2013:445-456.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems