[1]SHI Yingzhong,WANG Shitong,DENG Zhaohong,et al.The core vector machine-based rapid classification of multi-task concept drift dataset[J].CAAI Transactions on Intelligent Systems,2018,13(6):935-945.[doi:10.11992/tis.201712019]
Copy

The core vector machine-based rapid classification of multi-task concept drift dataset

References:
[1] HELMBOLD D P, LONG P M. Tracking drifting concepts by minimizing disagreements[J]. Machine learning, 1994, 14(1):27-45.
[2] BARTLETT P L, BEN-DAVID S, KULKARNI S R. Learning changing concepts by exploiting the structure of change[J]. Machine learning, 2000, 41(2):153-174.
[3] ZHOU Xiangyu, WANG Wenjun, YU Long. Traffic flow analysis and prediction based on GPS data of floating cars[C]//Proceedings of the 2012 International Conference on Information Technology and Software Engineering.[S.l.], 2013:497-508.
[4] KUWATA S, INABA Y, YOKOGAWA M, et al. Stream data analysis application for customer behavior with complex event processing[C]//IEICE Technical Committee Submission System Conference Paper’s Information.[S.l.], 2010, 110(1):13-18.
[5] VERGARA A, VEMBU S, AYHAN T, et al. Chemical gas sensor drift compensation using classifier ensembles[J]. Sensors and actuators B:chemical, 2012, 166-167:320-329.
[6] BARTLETT P L. Learning with a slowly changing distribution[C]//Proceedings of the Fifth Annual Workshop on Computational Learning Theory. Pittsburgh, Pennsylvania, USA, 1992:243-252.
[7] KLINKENBERG R, JOACHIMS T. Detecting concept drift with support vector machines[C]//Proceedings of the Seventeenth International Conference on Machine Learning. San Francisco, CA, USA, 2000:487-494.
[8] RUANO-ORDáS D, FDEZ-RIVEROLA F, MéNDEZAB J R. Concept drift in e-mail datasets:an empirical study with practical implications[J]. Information sciences, 2018, 428:120-135.
[9] C LANQUILLON. Enhancing test classification to improve information filtering[D]. Magdeburg, Germany:Faculty Comp Sci, Univ. Magdeburg, 2001.
[10] 文益民, 强保华, 范志刚. 概念漂移数据流分类研究综述[J]. 智能系统学报, 2013, 8(2):95-104 WEN Yimin, QIANG Baohua, FAN Zhigang. A survey of the classification of data streams with concept drift[J]. CAAI transactions on intelligent systems, 2013, 8(2):95-104
[11] ALIPPI C, ROVERI M. Just-in-time adaptive classifiers-part Ⅱ:designing the classifier[J]. IEEE transactions on neural networks, 2008, 19(12):2053-2064.
[12] EVGENIOU T, PONTIL M. Regularized multi——task learning[C]//Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Seattle, WA, USA, 2004:109-117.
[13] GRINBLAT G L, UZAL L C, CECCATTO H A, et al. Solving nonstationary classification problems with coupled support vector machines[J]. IEEE transactions on neural networks, 2011, 22(1):37-51.
[14] SHI Yingzhong, CHUNG F L K, WANG Shitong. An improved ta-svm method without matrix inversion and its fast implementation for nonstationary datasets[J]. IEEE transactions on neural networks and learning systems, 2015, 26(9):2005-2018.
[15] 史荧中, 邓赵红, 钱鹏江,等. 基于共享矢量链的多任务概念漂移分类方法[J]. 控制与决策, 2018, 33(7):1215-1222. SHI Yingzhong, DENG Zhaohong, QIAN Pengjiang, et al. Multi-task concept drift classification method based on shared vector chain[J]. Control and Decision, 2018, 33(7):1215-1222.
[16] PLATT J. Fast training of support vector machines using sequential minimal optimization[C]//Advances in Kernel Methods-Support Vector Learning. Cambridge, MA:MIT Press, 2000:185-208.
[17] TSANG I W, KWOK J T, CHEUNG P M. Core vector machines:fast SVM training on very large data sets[J]. Journal of Machine Learning Research, 2005, 6:363-392.
[18] TSANG I W H, KWOK J T Y, ZURADA J M. Generalized core vector machines[J]. IEEE transactions on neural networks, 2006, 17(5):1126-1140.
[19] B?DOIU M, CLARKSON K L. Optimal core-sets for balls[J]. Computational geometry, 2008, 40(1):14-22.
Similar References:

Memo

-

Last Update: 2018-12-25

Copyright © CAAI Transactions on Intelligent Systems