[1]TENG Nanjun,LU Huaxiang,JIN Min,et al.PG-RNN: a password-guessing model based on recurrent neural networks[J].CAAI Transactions on Intelligent Systems,2018,13(6):889-896.[doi:10.11992/tis.201712006]
Copy

PG-RNN: a password-guessing model based on recurrent neural networks

References:
[1] CASTELLUCCIA C, D?RMUTH M, PERITO D, et al. Adaptive password-strength meters from markov models[C]//Proceedings of the 19th Network & Distributed System Security Symposium. San Diego, United States, 2012.
[2] HASHCAT[EB/OL].[2017-10-12]. https://hashcat.net.
[3] John the Ripper password cracker[EB/OL].[2017-10-15]. http://www.openwall.com/john/.
[4] WEIR M, AGGARWAL S, DE MEDEIROS B, et al. Password cracking using probabilistic context-free grammars[C]//Proceedings of the 30th IEEE Symposium on Security and Privacy. Berkeley, USA, 2009:391-405.
[5] 韩伟力, 袁琅, 李思斯, 等. 一种基于样本的模拟口令集生成算法[J]. 计算机学报, 2017, 40(5):1151-1167 HAN Weili, YUAN Lang, LI Sisi, et al. An efficient algorithm to generate password sets based on samples[J]. Chinese journal of computers, 2017, 40(5):1151-1167
[6] MA J, YANG Weining, LUO Min, et al. A study of probabilistic password models[C]//Proceedings of 2014 IEEE Symposium on Security and Privacy. San Jose, USA, 2014:689-704.
[7] AMICO M D, MICHIARDI P, ROUDIER Y, et al. Password strength:an empirical analysis[C]//Proceedings of 2010 IEEE INFOCOM. San Diego, USA, 2010:1-9.
[8] GRAVES A. Generating sequences with recurrent neural networks[J]. Computer science, arXiv:1308. 0850, 2013.
[9] SUTSKEVER I, MARTENS J, HINTON G E, et al. Generating text with recurrent neural networks[C]//Proceedings of the 28th International Conference on Machine Learning. Bellevue, USA, 2011:1017-1024.
[10] Using neural networks for password cracking[OL/EB].[2017-10-15]. https://0day.work/using-neural-networks-for-password-cracking/.
[11] HITAJ B, GASTI P, ATENIESE G, et al. PassGAN:a deep learning approach for password guessing[J]. arXiv:1709.00440, 2017.
[12] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada, 2014:2672-2680.
[13] MELICHER W, UR B, SEGRETI S M, et al. Fast, lean, and accurate:modeling password guessability using neural networks[C]//Proceedings of the 23rd USENIX Security Symposium. Austin, USA, 2016:175-191.
[14] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural computation, 1997, 9(8):1735-1780.
[15] CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. arXiv:1412.3555, 2014.
[16] KOLEN J, KREMER S. Gradient flow in recurrent nets:the difficulty of learning LongTerm dependencies[M].[S.l.]:Wiley-IEEE Press, 2001.
[17] BENGIO Y, SIMARD P, FRASCONI P. Learning long-term dependencies with gradient descent is difficult[J]. IEEE transactions on neural networks, 1994, 5(2):157-166.
[18] ROCKYOU[OL/EB].[2017-10-13]. http://downloads.skullsecurity.org/passwords/rockyou.txt.bz2.
[19] YAHOO. Hackers expose 453, 000 credentials allegedly taken from Yahoo service (Updated)[EB/OL].[2012-07-12]. http://arstechnica.com/security/2012/07/yahoo-service-hacked/.
[20] MYSPACE. Information of 427 million MySpace accounts leaked, selling as a package at the price of 2800 dollars in black market[EB/OL].[2016-06-08]. https://www.wosign.com/english/News/myspace.html.
Similar References:

Memo

-

Last Update: 2018-12-25

Copyright © CAAI Transactions on Intelligent Systems