[1]MIN Fan,WANG Hongjie,LIU Fulun,et al.SUCE: semi-supervised binary classification based on clustering ensemble[J].CAAI Transactions on Intelligent Systems,2018,13(6):974-980.[doi:10.11992/tis.201711027]
Copy

SUCE: semi-supervised binary classification based on clustering ensemble

References:
[1] MITCHELL T M. 机器学习[M]. 曾华军, 张银奎, 译. 北京:机械工业出版社, 2003.
[2] ZHU Xiaojin. Semi-supervised learning literature survey[R]. Madison:University of Wisconsin, 2008:63-77.
[3] 张晨光, 张燕. 半监督学习[M]. 北京:中国农业科学技术出版社, 2013.
[4] 周志华. 机器学习[M]. 北京:清华大学出版社, 2016.
[5] NIGAM K, MCCALLUM A K, THRUN S, et al. Text classification from labeled and unlabeled documents using EM[J]. Machine learning, 2000, 39(2/3):103-134.
[6] SONG Yangqiu, ZHANG Changshui, LEE J, et al. Semi-supervised discriminative classification with application to tumorous tissues segmentation of MR brain images[J]. Pattern analysis and applications, 2009, 12(2):99-115.
[7] FENG Wei, XIE Lei, Zeng Jia, et al. Audio-visual human recognition using semi-supervised spectral learning and hidden Markov models[J]. Journal of visual languages and computing, 2009, 20(3):188-195.
[8] SHAHSHAHANI B M, LANDGREBE D A. The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon[J]. IEEE transactions on geoscience and remote sensing, 1994, 32(5):1087-1095.
[9] 梁吉业, 高嘉伟, 常瑜. 半监督学习研究进展[J]. 山西大学学报:自然科学版, 2009, 32(4):528-534 LIANG Jiye, GAO Jiawei, CHANG Yu. The research and advances on semi-supervised learning[J]. Journal of Shanxi university:natural science edition, 2009, 32(4):528-534
[10] MERZ C J, ST CLAIR D C, BOND W E. Semi-supervised adaptive resonance theory (SMART2)[C]//Proceedings of 1992 International Joint Conference on Neural Networks. Baltimore, USA, 1992:851-856.
[11] VEGA-PONS S, RUIZ-SHULCLOPER J. A survey of clustering ensemble algorithms[J]. International journal of pattern recognition and artificial intelligence, 2011, 25(3):337-372.
[12] 蔡毅, 朱秀芳, 孙章丽, 等. 半监督集成学习综述[J]. 计算机科学, 2017, 44(6A):7-13 CAI Yi, ZHU Xiufang, SUN Zhangli, et al. Semi-supervised and ensemble learning:a review[J]. Computer science, 2017, 44(6A):7-13
[13] 曾令伟, 伍振兴, 杜文才. 基于改进自监督学习群体智能(ISLCI)的高性能聚类算法[J]. 重庆邮电大学学报:自然科学版, 2016, 28(1):131-137 ZENG Lingwei, WU Zhenxing, DU Wencai. Improved Self supervised learning collection intelligence based high performance data clustering approach[J]. Journal of Chongqing university of posts and telecommunications:natural science edition, 2016, 28(1):131-137
[14] STREHL A, GHOSH J. Cluster ensembles-a knowledge reuse framework for combining partitionings[J]. Journal of machine learning research, 2002, 3:583-617.
[15] FRED A L N, JAIN A K. Data clustering using evidence accumulation[C]//Proceedings of the 16th International Conference on Pattern Recognition. Quebec, Canada, 2002:276-280.
[16] ZHOU Zhihua. Ensemble Methods:Foundations and Algorithms[M]. Boca Raton:Taylor and Francis Group, 2012:135-156.
[17] ZHANG Minling, ZHOU Zhihua. Exploiting unlabeled data to enhance ensemble diversity[J]. Data mining and knowledge discovery, 2013, 26(1):98-129.
[18] MIN Fan, HU Qinghua, ZHU W. Feature selection with test cost constraint[J]. International journal of approximate reasoning, 2014, 55(1):167-179.
[19] GIONIS A, MANNILA H, TSAPARAS P. Clustering aggregation[M]//SAMMUT C, WEBB G I. Encyclopedia of Machine Learning. Boston:Springer, 2011.
[20] 罗会兰, 孔繁胜, 李一啸. 聚类集成中的差异性度量研究[J]. 计算机学报, 2007, 30(8):1315-1324 LUO Huilan, KONG Fansheng, LI Yixiao. An analysis of diversity measures in clustering ensembles[J]. Chinese journal of computers, 2007, 30(8):1315-1324
[21] 杨草原, 刘大有, 杨博, 等. 聚类集成方法研究[J]. 计算机科学, 2011, 38(2):166-170 YANG Caoyuan, LIU Dayou, YANG Bo, et al. Research on cluster aggregation approaches[J]. Computer science, 2011, 38(2):166-170
[22] 杨玉梅. 基于信息熵改进的K-means动态聚类算法[J]. 重庆邮电大学学报:自然科学版, 2016, 28(2):254-259 YANG Yumei. Improved K-means dynamic clustering algorithm based on information entropy[J]. Journal of Chongqing university of posts and telecommunications:natural science edition, 2016, 28(2):254-259
[23] JAMSHIDIAN M, JENNRICH R I. Standard errors for EM estimation[J]. Journal of the royal statistical society. series B, 2000, 62(2):257-270.
[24] DEEPSHREE A V, YOGISH H K. Farthest first clustering in links reorganization[J]. International journal of web and semantic technology, 2014, 5(3):17-24.
[25] RASHEDI E, MIRZAEI A. A hierarchical clusterer ensemble method based on boosting theory[J]. Knowledge-based systems, 2013, 45:83-93.
Similar References:

Memo

-

Last Update: 2018-12-25

Copyright © CAAI Transactions on Intelligent Systems