[1]LIANG Lijun,LI Yegang,ZHANG Nana,et al.Collaborative filtering algorithm combining user features and preferences in optimized clustering[J].CAAI Transactions on Intelligent Systems,2020,15(6):1091-1096.[doi:10.11992/tis.201710024]
Copy

Collaborative filtering algorithm combining user features and preferences in optimized clustering

References:
[1] 王国霞, 刘贺平. 个性化推荐系统综述[J]. 计算机工程与应用, 2012, 48(7): 66-76
WANG Guoxia, LIU Heping. Survey of personalized recommendation system[J]. Computer engineering and applications, 2012, 48(7): 66-76
[2] Jamali M, Ester M. A transitivity aware matrix factorization model for recommendation in social networks[C]//Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence. Barcelona, Spain,2011:2644-2649.
[3] WEI Jian, HE Jianhua, CHEN Kai, et al. Collaborative filtering and deep learning based recommendation system for cold start items[J]. Expert systems with applications, 2017, 69: 29-39.
[4] AGGARWAL C C. An introduction to data mining[M]//AGGARWAL C C. Data Mining: the Textbook. Cham: Springer, 2015: 1-26.
[5] 孙天昊, 黎安能, 李明, 等. 基于Hadoop分布式改进聚类协同过滤推荐算法研究[J]. 计算机工程与应用, 2015, 51(15): 124-128
SUN Tianhao, LI Anneng, LI Ming, et al. Study on distributed improved clustering collaborative filtering algorithm based on Hadoop[J]. Computer engineering and applications, 2015, 51(15): 124-128
[6] 胡勋, 孟祥武, 张玉洁, 等. 一种融合项目特征和移动用户信任关系的推荐算法[J]. 软件学报, 2014, 25(8): 1817-1830
HU Xun, MENG Xiangwu, ZHANG Yujie, et al. Recommendation algorithm combing item features and trust relationship of mobile users[J]. Journal of software, 2014, 25(8): 1817-1830
[7] LIU Haifeng, HU Zheng, MIAN A, et al. A new user similarity model to improve the accuracy of collaborative filtering[J]. Knowledge-based systems, 2014, 56: 156-166.
[8] 韦素云, 肖静静, 业宁. 基于联合聚类平滑的协同过滤算法[J]. 计算机研究与发展, 2013, 50(S2): 163-169
WEI Suyun, XIAO Jingjing, YE Ning. Collaborative filtering algorithm based on co-clustering smoothing[J]. Journal of computer research and development, 2013, 50(S2): 163-169
[9] LEE D D, SEUNG H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755): 788-791.
[10] ELKAHKY A M, SONG Yang, HE Xiaodong. A multi-view deep learning approach for cross domain user modeling in recommendation systems[C]//Proceedings of the 24th International Conference on World Wide Web. Florence, Italy, 2015: 278-288.
[11] 陈克寒, 韩盼盼, 吴健. 基于用户聚类的异构社交网络推荐算法[J]. 计算机学报, 2013, 36(2): 349-359
CHEN Kehan, HAN Panpan, WU Jian. User clustering based social network recommendation[J]. Chinese journal of computers, 2013, 36(2): 349-359
[12] 张顺龙, 库涛, 周浩. 针对多聚类中心大数据集的加速K-means聚类算法[J]. 计算机应用研究, 2016, 33(2): 413-416
ZHANG Shunlong, KU Tao, ZHOU Hao. Accelerate K-means for multi-center clustering of big datasets[J]. Application research of computers, 2016, 33(2): 413-416
[13] 贾洪杰, 丁世飞, 史忠植. 求解大规模谱聚类的近似加权核K-means算法[J]. 软件学报, 2015, 26(11): 2836-2846
JIA Hongjie, DING Shifei, SHI Zhongzhi. Approximate weighted kernel K-means for large-scale spectral clustering[J]. Journal of software, 2015, 26(11): 2836-2846
[14] DRAISMA J, HOROBET E, OTTAVIANI G, et al. The Euclidean distance degree of an algebraic variety[J]. Foundations of computational mathematics, 2016, 16(1): 99-149.
Similar References:

Memo

-

Last Update: 2020-12-25

Copyright © CAAI Transactions on Intelligent Systems